

CEN/WS GITB3

Date: 2015-xx-xx

CWA XXXXX:2015

Secretariat: NEN

Draft CEN Workshop Agreement:
Global eBusiness Interoperability Test Bed (GITB)

Phase 3: Implementation Specifications and Proof-of-Concept

Status: Draft CWA for Public Comment

CWA XXXXX:XXXX

1

Contents

Foreword ... 8
1 Executive Overview .. 9
2 Definitions and Abbreviations .. 14

2.1 Definitions .. 14
2.1.1 eBusiness Specifications (à see Section 3) ... 14
2.1.2 Testing Purposes and Requirements (à see Section 3.4) .. 14
2.1.3 Testing Roles (à see Section 4) .. 15
2.1.4 Testing Framework and Architecture (à see Section 3.4) .. 15

2.2 Abbreviations ... 18
Part I: Motivation for eBusiness Testing and Overview of GITB Testing Framework 20
3 Motivation ... 20

3.1 Testing as a Key Prerequisite to eBusiness Interoperability .. 20
3.2 Stakeholders and their Interests in eBusiness Testing ... 20
3.3 Categories of eBusiness Specifications ... 22
3.4 eBusiness Testing ... 23

3.4.1 Conformance and Interoperability Testing ... 23
3.4.2 Testing Context and Stakeholders ... 24

3.5 Benefits of a Global eBusiness Interoperability Test Bed ... 25
4 GITB Principles and Testing Framework ... 26

4.1 Objectives and Principles ... 26
4.2 Synthesis of GITB Testing Framework .. 27
4.3 Roles within the Testing Framework ... 27
4.4 GITB Methodology ... 28

4.4.1 Using Test Assertions .. 28
4.4.2 Standalone Document Validation ... 28
4.4.3 SUT-Interactive Conformance Testing ... 29
4.4.4 Interoperability Testing ... 29
4.4.5 Proposed Testing Practices for SUTs .. 30

4.5 GITB Architecture .. 31
Part II: Core Test Bed Implementation Specifications and Proof-of-Concept 34
5 Overview of Core Test Bed Implementation Specifications 34

5.1 Relevant Core Test Bed Service Specifications and Artifacts 34
5.2 GITB Namespaces and Common Element Definitions .. 35

5.2.1 XML Schema for Common Elements ... 37
6 Test Presentation Language (TPL) ... 41

6.1 Abstract Model ... 41
6.2 Test Step Identification ... 43
6.3 XML Schema for TPL ... 44

7 Test Reporting Format ... 46
7.1 Abstract Model ... 46

7.1.1 XML Schema for Test Reporting Format ... 48

CWA XXXXX:XXXX

2

8 GITB Test Service Specifications ... 50
8.1 Content Validation Service ... 50

8.1.1 Service Overview ... 50
8.1.2 Abstract Service Description .. 50

8.1.2.1 ValidationClient Requests Module Definition ... 50
8.1.2.2 Validation ... 51

8.1.3 Web Service Description (WSDL) .. 51
8.1.4 XML Schema for Request/Response Messages ... 52

8.2 Messaging (Simulation) Service .. 52
8.2.1 Service Overview ... 52
8.2.2 Abstract Service Description .. 54

8.2.2.1 Requesting Module Definition (GetModuleDefinition) .. 54
8.2.2.2 Initiating the Session (Initiate) .. 54
8.2.2.3 Initiating a Transaction (BeginTransaction) .. 54
8.2.2.4 Commanding Messaging Service to Send a Message (Send) .. 54
8.2.2.5 Notification of the Client for Received or Proxied Messages (NotifyForMessage callback) .. 54
8.2.2.6 Closing the Transaction (EndTransaction) ... 55
8.2.2.7 Closing the Session (Finalize) .. 55

8.2.3 Web Service Description (WSDL) for Messaging Service (Service Provider) 55
8.2.4 Web Service Description (WSDL) for Messaging Service Client (Service Consumer) .. 57
8.2.5 XML Schema for Request/Response Messages ... 57

8.3 Test Bed Service .. 59
8.3.1 Service Overview ... 59
8.3.2 Abstract Service Description .. 60

8.3.2.1 Requesting Test Case Definition (GetTestcaseDefinition) ... 60
8.3.2.2 Initiating Test Process (Initiate) .. 60
8.3.2.3 Requesting Actor Definition (GetActorDefinition) .. 61
8.3.2.4 Configure Test Execution (Configure) ... 61
8.3.2.5 Initiate Preliminary Phase (InitiatePreliminary) .. 61
8.3.2.6 Providing User Input for Execution (ProvideInput) ... 61
8.3.2.7 Starting the Execution Phase (Start) .. 61
8.3.2.8 Status Updates for Testcase Execution (UpdateStatus callback) .. 62
8.3.2.9 User Interaction During Execution (InteractWithUsers callback) ... 62
8.3.2.10 Stopping the Execution (Stop) ... 62
8.3.2.11 Restarting the Execution Phase (Restart) .. 62

8.3.3 Web Service Description (WSDL) for Testbed Service (Service Provider) 62
8.3.4 Web Service Description (WSDL) for Testbed Service Client (Service Consumer) 65
8.3.5 XML Schema for Request/Response Messages ... 66

9 GITB Test Description Language (TDL) ... 68
9.1 GITB Test Bed Concepts and Interfaces ... 68

9.1.1 Basic Concepts .. 68
9.1.2 Type System and Expressions .. 68
9.1.3 Modularity for Specific Functionalities .. 69

9.2 Test Suite Definition .. 71
9.3 Test Case Definition .. 71

9.3.1 Namespace Declarations ... 72
9.3.2 Importing External Test Modules and Artifacts .. 72
9.3.3 Defining the Actors and Roles in the Test Case .. 73
9.3.4 Defining the Variables .. 73
9.3.5 Preliminary Phase for the Execution .. 73
9.3.6 Test Steps and Commands ... 74
9.3.7 Messaging Steps ... 75
9.3.8 Validation Step ... 76
9.3.9 User Interaction During Execution ... 77
9.3.10 Interim Computations ... 77
9.3.11 Test Flow Steps ... 77

CWA XXXXX:XXXX

3

9.3.12 Modular Test Scripting ... 78
9.3.13 Expressions and Bindings .. 78

9.4 XML Schema for TDL .. 79
10 GITB Proof of Concept (PoC) Test Bed Implementation 84

10.1 Software Architecture ... 84
10.1.1 GITB Testbed ... 85
10.1.2 GITB Testbed Modules .. 86

10.1.2.1 The Central Part of the GITB Testbed: gitb-core ... 86
10.1.3 GITB Execution Interface ... 102

10.1.3.1 How to Use the GITB POC Interface ... 102
10.1.3.2 REST API ... 108

10.2 Case Studies with POC Test Bed ... 109
10.2.1 UBL Use Case - Conformance Tests for PEPPOL BIS4A Invoice Only Specification
 109

10.2.1.1 Test Suite Definition ... 109
10.2.1.2 Development of the Necessary Messaging Handlers .. 110
10.2.1.3 Definition of Test Artifacts .. 110

10.2.2 Using a GITB Compliant Validation Service Within A Test Case (here: Validex) 113
10.2.2.1 How to Integrate ... 113
10.2.2.2 Definition of the Test Case ... 114

11 GITB Compliance ... 115
11.1 GITB Compliance Levels .. 115
11.2 GITB Framework Compliance .. 116
11.3 GITB Service Compliance ... 118
11.4 GITB TDL Compliance .. 120

Part III: GITB Test Registry and Repository (TRR) Specifications and Prototype ... 121
12 GITB Test Registry and Repository (TRR) Specifications 121

12.1 Role of TRR in the GITB Architecture ... 121
12.2 User Classes and Roles .. 122
12.3 Basic Concepts ... 123

12.3.1 Testing Resources Managed by the TRR .. 123
12.3.2 Metadata .. 123

12.4 The Asset Description Metadata Schema application profile for TRR 124
12.4.1 Logical view of the metadata ... 125
12.4.2 Namespaces .. 125
12.4.3 Application Profile Classes .. 127
12.4.4 Application Profile Properties per Class ... 129

12.4.4.1 Asset .. 129
12.4.4.2 Asset Distribution ... 130
Asset Repository .. 130
Test Asset ... 130
12.4.4.3 Test Bed ... 131
12.4.4.4 Test Capability Component .. 131
12.4.4.5 Test Logic Artifact .. 131
12.4.4.6 Test Suite ... 131
12.4.4.7 Test Case ... 132
12.4.4.8 Payload File ... 132
12.4.4.9 Messaging Adapter .. 132
12.4.4.10 Document Validator .. 132
12.4.4.11 Specification Type .. 132
12.4.4.12 Identifier ... 132
12.4.4.13 Publisher .. 133
12.4.4.14 Standardization Level ... 133
12.4.4.15 Representation Technique ... 133

12.4.5 Controlled Vocabularies to be Used .. 133

CWA XXXXX:XXXX

4

12.4.5.1 Specification Type of Asset .. 135
12.4.5.2 Representation Type of Asset Distribution ... 135
12.4.5.3 Standardization Level of Test Logic Artifact ... 136

12.5 Features ... 137
12.5.1 Overview .. 137
12.5.2 Concepts .. 138
12.5.3 Search Testing Resources ... 138

12.5.3.1 Typical searches .. 138
12.5.3.2 Examples of search queries and their answer ... 139

12.5.4 Testing Resources management ... 141
12.5.5 Secondary Features ... 141

12.5.5.1 Workspace and Folders Management ... 141
12.5.5.2 Bulletin board ... 142
12.5.5.3 General administration ... 142

12.6 Process View ... 143
12.7 External Interfaces .. 145

12.7.1 User Interfaces ... 145
12.7.2 Software Interfaces .. 145
12.7.3 Communications Interfaces ... 145

13 Test Registry and Repository (TRR) Prototype Implementation 146
13.1 Joinup ... 146
13.2 TRR in Joinup: Functional Specification .. 146

13.2.1 Use Case Diagram ... 146
13.2.2 Actors ... 147

13.2.2.1 Anonymous User .. 147
13.2.2.2 Joinup Member .. 147

13.2.3 Uses Cases .. 147
13.2.3.1 Search Testing Resources within the Joinup Platform ... 148
13.2.3.2 View Testing Resources .. 149
13.2.3.3 Create & Update Testing Resources ... 150
13.2.3.4 Delete Testing Resources .. 151

13.2.4 Fields of Testing Resources .. 151
13.2.4.1 Reused Fields .. 152
13.2.4.2 Updated Fields ... 152

Part IV: GITB Application and Validation based on Use Cases from Public
Procurement, e-Health and Manufacturing Industries ... 154
14 Applying GITB in Use Cases ... 154

14.1 Approach .. 154
14.2 Deriving Testing Requirements ... 155

14.2.1 Verification Scope (“What to Test?”) .. 155
14.2.2 Operational Requirements (“In Which Environment?”) .. 157

14.3 Deriving Test Scenarios and Solutions ... 158
Part IV. 1: Public Procurement .. 159
15 OpenPEPPOL ... 159

15.1 Background and Testing Requirements ... 159
15.2 Verification Scope – What Should Be Tested? ... 160

15.2.1 Actors ... 160
15.2.2 Business Process .. 160
15.2.3 Underlying eBusiness Specifications / Standards .. 161

15.3 Testing Environment – How Should Be Tested? ... 161
15.3.1 Testing Integration in Business Environment ... 161
15.3.2 Testing Location ... 161

15.4 Test Scenario ... 162

CWA XXXXX:XXXX

5

15.4.1 Objectives and Success Criteria .. 162
15.4.2 Interaction Diagram/Choreography .. 162

15.4.2.1 Endpoint Lookup .. 162
15.4.2.2 Document Exchange .. 163

15.4.3 System Under Test (s) ... 163
15.4.4 Abstract Test Steps .. 163

15.5 Related Existing Test Artifacts/Tools/Services to Reuse in the Domain 164
15.5.1 Test Artifacts .. 164
15.5.2 Test Tools and Services .. 165

15.6 Related Stakeholders .. 165
16 eSENS ... 166

16.1 Background and Testing Requirements ... 166
16.2 Verification Scope – What Should Be Tested? ... 167

16.2.1 Actors and Roles .. 167
16.2.2 Business Process .. 167
16.2.3 Underlying eBusiness Specifications / Standards .. 168

16.3 Test Scenario ... 169
16.3.1 Objectives and Success Criteria .. 169
16.3.2 Interaction Diagram/Choreography .. 169
16.3.3 System Under Test (s) ... 170
16.3.4 Abstract Test Steps .. 170

16.4 Related Existing Test Artifacts/Tools/Services to Reuse in the Domain 171
16.4.1 Test Artifacts .. 171
16.4.2 Test Tools and Services .. 171

16.5 Related Stakeholders .. 171
17 Connecting Europe Facility (CEF) .. 172

17.1 Background and Testing Requirements ... 172
17.2 Verification Scope – What Should Be Tested? ... 173

17.2.1 Actors ... 173
17.2.2 Business Process .. 173
17.2.3 Underlying Standards/Specifications ... 173

17.3 Test Scenario ... 174
17.3.1 Objectives and Success Criteria .. 174
17.3.2 System Under Test (s) ... 175
17.3.3 Abstract Test Steps .. 175

17.4 Related Existing Test Artifacts/Tools/Services to Reuse in the Domain 176
17.4.1 Test Artifacts .. 176
17.4.2 Test Tools and Services .. 176

17.5 Related Stakeholders .. 176
18 Electronic Invoicing for the National Health Service (NHS) 177

18.1 Background and Testing Requirements ... 177
18.2 Verification Scope – What Should Be Tested? ... 177

18.2.1 Actors ... 177
18.2.2 Business Process .. 177
18.2.3 Standards and Specifications .. 177

18.3 Testing Environment – How Should Be Tested? ... 178
18.3.1 Testing Integration in Business Environment ... 178
18.3.2 Testing Location ... 178

18.4 Test Scenario ... 178
18.4.1 Objectives .. 178
18.4.2 System under Test (s) .. 179
18.4.3 Abstract Test Steps .. 181

18.4.3.1 Interoperability Testing ... 181

CWA XXXXX:XXXX

6

18.4.3.2 Interoperability and Conformance Test Cases for 3 Document Types 182
18.4.3.3 SML and SMP Test Cases ... 185

18.5 Existing Test Artifacts/Tools/Services to Reuse in the Domain 187
18.6 Stakeholders .. 187

Part IV. 2: e-Health ... 188
19 Clinical Document Architeture (CDA) .. 188

19.1 Background and Testing Requirements ... 188
19.2 Verification Scope – What Should be Tested? ... 188

19.2.1 Parties/Actors ... 189
19.3 Underlying eBusiness Specifications / Standards ... 189
19.4 Testing Scenarios ... 190

19.4.1 Objectives and Success Criteria .. 190
19.4.2 System Under Test (s) ... 190
19.4.3 Abstract Test Steps .. 190

19.4.3.1 Testing the content creator .. 190
19.4.3.2 Testing the content consumer .. 191

19.5 Related Existing Test Artifacts/Tools/Services to Reuse in the Domain 191
19.6 Related Stakeholders .. 191
19.7 Re-usability of Test artifacts/Tools/Services for GITB3 .. 192

20 IHE – Cross-Enterprise Document Sharing (XDS) .. 193
20.1 Background and Testing Requirements ... 193
20.2 Verification Scope – What to Test? ... 193
20.3 Actors ... 193

20.3.1 Interaction Diagram/Choreography .. 194
20.3.2 Underlying eBusiness Specifications / Standards .. 194

20.4 Details/Requirements of Test Scenario ... 195
20.4.1 Objectives and Success Criteria .. 195
20.4.2 System(s) Under Test .. 195
20.4.3 Abstract Test Steps .. 195

20.4.3.1 Testing the Document Source .. 195
20.4.3.2 Testing the Document Consumer .. 196
20.4.3.3 Testing the Document Repository .. 196
20.4.3.4 Testing the Document Registry .. 196

20.5 Related Existing Test Artifacts/Tools/Services to Reuse in the Domain 197
20.6 Related Stakeholders .. 198
20.7 Re-usability of Test Artifacts/Tools/Services for GITB3 .. 198

Part V: Manufacturing and Automotive .. 199
21 Electronic Invoicing Based on EDIFACT and OFTP2 ... 199

21.1 Background and Testing Requirements ... 199
21.2 Verification Scope ... 199

21.2.1 Actors ... 199
21.2.2 Business Documents ... 199
21.2.3 Standards and Specifications .. 200

21.3 Test Scenario ... 201
21.3.1 Test Objectives / Requirements ... 201
21.3.2 System under Test (s) .. 201
21.3.3 Abstract Test Steps .. 201

21.3.3.1 Document Validation .. 201
21.3.3.2 Messaging Operations ... 203

21.4 Existing Test Artifacts/Tools/Services to Reuse in the Domain 204
21.5 Stakeholders .. 204

22 Cross-Border Transactions ... 205

CWA XXXXX:XXXX

7

22.1 Background and Testing Requirements ... 205
22.2 Verification Scope ... 205

22.2.1 Actors ... 205
22.2.2 Business Document ... 205
22.2.3 Underlying Standards and Specifications .. 205

22.3 Test Scenario ... 205
22.3.1 Objectives and Success Criteria .. 205
22.3.2 System under Test (s) .. 205
22.3.3 Test Steps .. 205

22.4 Existing Test Artifacts/Tools/Services to Reuse in the Domain 206
22.5 Related stakeholders .. 206

23 Test Bed Interoperability with Application for a Truck Manufacturer 207
23.1 Background and Testing Requirements ... 207
23.2 Verification Scope ... 207

23.2.1 Parties/Actors ... 207
23.2.2 Standards and specifications ... 207

23.3 Test Scenario ... 207
23.3.1 Objectives .. 207
23.3.2 System under Test (s) .. 207
23.3.3 Abstract Test Steps .. 207
23.3.4 Validex Integration ... 208

23.4 Application in a Truck Manufacturer Test Scenario .. 209
23.5 Stakeholders .. 210

References .. 211

CWA XXXXX:XXXX

8

Foreword

CWA XXX was developed “CEN/CENELEC Workshop Agreements – The way to rapid agreement” and with
the relevant provisions of CEN/CENELEC Internal Regulations - Part 2. It was agreed on YYYY-MM-DD in a
Workshop by representatives of interested parties, approved and supported by [CEN and/or CENELEC]
following a public call for participation made on YYYY-MM-DD. It does not necessarily reflect the views of all
stakeholders that might have an interest in its subject matter.

The final text of CWA XXX was submitted to [CEN and/or CENELEC] for publication on YYYY-MM-DD. It
was developed and approved by”:

• Colinde
• Compliance Test Pty Ltd
• EHIBCC (European Health Industry BarCode Council
• ENEA
• European Commission, DIGIT unit B6
• FernUniversität in Hagen
• Netsend Limited
• Nexus IT
• RBS
• Sonnenglanz Consulting B.V.
• TeleTrusT – IT Security Association Germany
• TNO

The GITB Project Team was chaired by Asuman Dogac, SRDC (Software Research & Development and
Consultancy Limited) and composed of:

• University of Lausanne, Faculty of Business and Economics, Department of Information Systems
• Midran ehf
• Invinet sistemes
• IHE Service
• SRDC, Software Research & Development and Consultancy Limited
• Engisis S.r.l.

Other contributors included:

• ISA Action 4.2.6 - Interoperability Test Bed

CWA XXXXX:XXXX

9

1 Executive Overview

Motivation

The work on GITB is motivated by the increasing need to support testing of eBusiness scenarios as a means
to foster standards adoption, achieve better compliance to standards and greater interoperability within and
across the various industry, governmental and public sectors. Without testing, it is cumbersome to reach
interoperability of eBusiness implementations and to achieve conformance with standards specifications.
More advanced testing methodologies and practices are needed to cope with the relevant set of standards
for realizing comprehensive eBusiness scenarios (i.e. business processes and choreography, business
documents, transport and communication protocols), as well as Test Beds addressing the specific
requirements of multi-partner interactions.

GITB intends to increase the coordination between the manifold industry consortia and standards
development organizations with the goal to increase awareness of testing in eBusiness standardization and
to reduce the risk of fragmentation, duplication and conflicting eBusiness testing efforts. It thereby supports
the goals of the European ICT standardization policy12 to increase the quality, coherence and consistency of
ICT standards and provide active support to the implementation of ICT standards.

Vision

The long-term objective is to establish a shared and Global eBusiness Interoperability Test Bed (GITB)
infrastructure to support conformance and interoperability testing of eBusiness Specifications and their
implementation by software vendors and end-users.

Objectives

The GITB project aims at

• developing the required global Testing Framework, architecture and methodologies for state-
of-the-art eBusiness Specifications and profiles covering all layers of the interoperability stack
(business processes, business documents, transport and communication);

• supporting the realization of GITB as a network of multiple Test Beds, thereby leveraging existing
and future testing capabilities from different stakeholders (for example standards development
organizations and industry consortia, Test Bed Providers, and accreditation / certification
authorities);

• establishing under EU support and guidance, a setup of a comprehensive and global eBusiness
interoperability Test Bed infrastructure in a global collaboration of European, North American and
Asian partners.

GITB focuses on the architecture, methodology and guidelines for assisting in the creation, use and
coordination of Test Beds. It is not intended to become an accreditation/certification authority or to impose a
particular Test Bed implementation.

1 COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL AND THE
EUROPEAN ECONOMIC AND SOCIAL COMMITTEE A strategic vision for European standards: Moving forward to
enhance and accelerate the sustainable growth of the European economy by 2020 COM(2011)311 final

2 Regulation (EU) 1025/2012 on European Standardisation.

CWA XXXXX:XXXX

10

Benefits

Overall GITB benefits are two-fold: First, GITB raises the awareness of testing as a prerequisite to
standards adoption and interoperable eBusiness implementations. It ensures that advanced testing
methodologies and services will be available for state-of-the-art eBusiness Specifications. Second, GITB
promotes a shared, international testing infrastructure realized as a network of Test Beds that
leverages synergies between existing and future testing activities. Compared to stand-alone Test Beds
covering only one or a few eBusiness Specifications, the GITB network saves costs and increases speed in
developing and providing high-quality testing services for eBusiness Specifications.

End-users will benefit from the advanced testing methodologies, architectures and services for realizing
comprehensive eBusiness scenarios more quickly and with less project risks. They also avoid costs implied
by investments in low quality, non-interoperable standards.

By putting more emphasis on testing, standards development organizations (SDOs) and industry
consortia ensure developing high quality, timely eBusiness Specifications in support of the industry needs;
and enable straightforward and effective approaches for standards’ implementation assessment, piloting,
and deployment.

Based on advanced testing methodologies and services, software vendors, eBusiness consultants and
integrators are able to develop and integrate enterprise applications in a demonstrably conformant and
interoperable manner. Missing implementation guidelines and missing testing facilities increase their
implementation efforts and the risks that their software applications do not conform to eBusiness
Specifications and / or are not interoperable with other implementations

With GITB, standards development organizations, test service providers, and software vendors
benefit from a joint approach for developing Test Beds across different world regions and sectors, which
positively affects development cost, capability, and compatibility of future testing facilities by leveraging best
of class expertise and shared resources. They could benefit from sharing the work load, agreeing on the
interpretations of the standards, and working in a synchronized manner.

National governments and the European Union benefit by providing industry, including the SMEs, with
high-quality ICT standards in a timely manner to ensure competitiveness in the global market while
responding to societal expectations. By providing active support to the implementation of ICT standards
using a standard testing approach, they increase the quality, coherence, and consistency of ICT standards.

GITB Phases and Approach

GITB objectives are planned to be achieved in three phases (Table 1-11-1). This CWA summarizes the GITB
third phase which develops implementation specifications, an open source Test Bed and a prototype for Test
Registry and Repository as proof-of-concept for the GITB architecture. It builds on the results of the first
phase (feasibility study) and second phase (testing framework and architecture).

In all three phases of the GITB project, eBusiness use cases played an important role to capture real-world
eBusiness testing requirements and to develop and validate the GITB Testing Framework and the
specifications. GITB relies on the following industry communities which contribute their requirements and
experience in eBusiness testing:

• Public Procurement: CEN Business Interoperability Interfaces (BII), Pan European Public
Procurement Online (PEPPOL / openPEPPOL), Electronic Simple European Networked Services (e-
SENS).

• Healthcare: HL7 Clinical Document Architecture (CDA), IHE Cross-Enterprise Document Sharing
(XDS).

• Automotive Industry: MOSS (Materials Off-Shore Sourcing).

CWA XXXXX:XXXX

11

Table 1-1: The Three Phases of the GITB Project

Phase Phase 1:
Feasibility study

Phase 2:
Conceptualization of the
GITB framework and
architecture

Phase 3: Realization

Main activities An analysis of the
benefits, risks, tasks,
requirements, required
resources for a GITB
based on business
use cases; current
state of eBusiness
testing facilities.

Analysis of alternative
approaches to architecting
and implementing a GITB.

A recommended
architecture and process to
implement the Test Bed
that follows from the
requirements and
architectural analysis with
clear rationale.

Assessment requirements
from international
stakeholders.

Refinement and detailed
specification of GITB
Testing Framework.

Proof-of-concept
implementation
comprising

• Test Bed
• Test Registry and

Repository
• Test artifacts for

business use cases

Main results Assessment of testing
requirements from
three use cases

Comparison to existing
testing facilities and
gap analysis

GITB Testing Framework
(architecture, methodology
and guidelines) for
assisting in the creation,
use and coordination of
Test Beds

Validation based on three
use cases

GITB specifications:

• Core Test Bed
implementation
specifications

• Test Registry and
Repository

Proof-of-Concept:

• Open source Test
Bed

• Test Registry and
Respository
prototype

Sample Test Artifacts

Published as
CWA

CWA 16093:2010 CWA 16408:2012 To be announced

During the initial phase, the feasibility analysis was performed by gathering the requirements from three use
cases with regard to Verification Scope (“what to test”) and operational requirements (“how to test”). The
comparison between these requirements and the existing eBusiness Testing Capabilities revealed a set of
functional and non-functional gaps. The assessment of these gaps demonstrated that a shared, operational
Test Bed infrastructure is desirable and feasible to complement eBusiness standards development efforts.

The second phase further conceptualized and elaborated the suggested approaches to architecting and
implementing GITB. Its main result is the GITB Testing Framework which comprises architecture,
methodology and guidelines for assisting in the creation, use and coordination of Test Beds. The GITB
Testing Framework has been instantiated and validated for the use cases, and a pilot implementation has
been done in one case.

The GITB Testing Framework forms the basis for the realization of the GITB Platform in the third phase. The
aim of this third GITB phase is to elaborate implementation specifications, to develop a proof-of-concept

CWA XXXXX:XXXX

12

(POC) Test Bed that implements these specifications, and to apply this test bed to one or more real use case
test scenarios.

GITB Phase 3 comprises three lines of work (see Figure 1-2):

(1) Implementation specifications: this line of work is about the development of detailed, machine-
processable specifications for the Test Artifacts and interfaces functionally described in Phase 2, so
that interoperable test bed implementations can be developed from these. These specifications
include formal document structures (e.g. XML schemas and rules), formally defined remote service
interfaces (e.g. WSDL) and internal APIs (e.g. as written in Java). These specifications also include
the profiling of existing standards or technologies that are considered supportive of Phase 3, called
here “supportive standards / technologies”.

(2) Test Bed proof-of-concept development: this includes all development and integration work for
the POC test bed. In particular: (a) development of a core test bed platform and some plug-in
components necessary for targeted test scenarios, i.e. at least one of each plug-in category:
message adapter, test suite engine, document validator. (b) development of a prototype TRR based
on a supportive Registry/Repository standard. This may also include (c) integration of an existing
“legacy” test bed following the “GITB-service compliance” approach described in Phase 2.

(3) Test Scenario development: this line of work is about demonstrating actual use of the test bed
POC for one or more industry domain(s). It includes (a) development or migration of a test suite for
the domain, including a document validator, (b) deployment of these test artifacts in the TRR and in
the test bed POCs, and (c) an end-to-end test demonstration over test material and/or SUTs used in
real use case test scenarios, followed by with feedback from domain experts and users.

Figure 1-2: Focus of the Third Phase of GITB

How to Read This CWA Document

This CWA presents the GITB implementation specifications for Test Bed as well as the Test Registry and
Respository. It describes prototype implementations for both, which serve as proof-of-concept. It also applies
the GITB results in use cases. In order to improve readability, the report is structured in four main sections
addressing different target groups and their view on GITB project results (Table 1-2).

CWA XXXXX:XXXX

13

Table 1-2: Guidelines of How to Read the CWA Document

Main Sections Content Relevant for …

Part I: Motivation for
eBusiness Testing and
GITB Testing Framework
Chapters 3 to 4

Why eBusiness testing matters? 	
• Motivation for eBusiness Testing

How GITB envisions eBusiness testing
• GITB Architecture Vision
• GITB Testing Framework

eBusiness users,
standard development
organizations, industry
consortia, testing experts
and all other
stakeholders interested in
the general motivation for
GITB and an overview of
the proposed solution

Part II: GITB Test Bed Core
Implementation
Specifications
Chapters 5-11

• Test Presentation Language (TPL)
• Test Reporting Format
• GITB Test Service Specifications
• GITB Test Description Language (TDL)
• GITB Proof-of-Concept Test Bed

Implementation
• GITB Compliance

Testing experts and
architects that are
interested in the detailed
Test Bed Architecture and
Specifications

Part III: GITB Test
Repository and Registry
(TRR) Specifications

Chapters 12-13

• Application profile for TRR based on the
Asset Description Metadata Schema
(ADMS)

• Prototype Implementation based on
JoinUp

Testing experts and
architects that are
interested in registries and
repositories for sharing
Testing Resources

Part IV: Testing Scenarios
from Public Procurement,
Healthcare and
Automotive /
Manufacturing Industries

Chapters 14-23

How to Use GITB for eBusiness testing?
• Test Scenarios definitions and workflow.
• Test Artifacts related to Test Scenarios

(Test Suite, Test Assertions)
For selected industries
• Public Procurement
• Healthcare
• Automotive and Manufacturing Industry

eBusiness users,
standard development
organizations, industry
consortia that are
interested in applying the
Test Bed Architecture to
their eBusiness scenarios

CWA XXXXX:XXXX

14

2 Definitions and Abbreviations

2.1 Definitions

The following definitions are intended to address the most commonly recurring terms about testing in this
report. They are general definitions that may be refined in later sections of the document. Other terms
relating to specific areas (e.g. architecture, artifacts), will be listed in the related sections.

For the purpose of the present document, the terms and definitions given in ISO/IEC 9646-1:1994
“Information technology - Open Systems Interconnection - Conformance Testing methodology and
framework - Part 1: General concepts” apply.

Most of the definitions below are capitalized, even when involving common terms – e.g. “Test Bed”. When
the capitalized version is used in this document, it should be understood as having the particular meaning
defined in this section (or as defined in a further section), usually more precise or specific to the GITB
context than the common meaning for the term.

2.1.1 eBusiness Specifications (à see Section 3)

eBusiness Specification: An eBusiness Specification is any agreement or mode of operation that needs to
be in place between two or more partners in order to conduct eBusiness transactions. An eBusiness
Specification is associated with one or more of three different layers in the eBusiness interoperability stack:
transport and communication (Messaging) layer, Business Document layer, and Business Process layer. In
many situations, an eBusiness Specification comprises a set of standards or a profile of these.

Profile (of eBusiness Specifications): A Profile represents an agreed upon subset or interpretation of one
or more eBusiness Specifications, intended to achieve interoperability while adapting to specific needs of a
user community.

Business Process: A Business Process is a flow of related, structured activities or tasks that fulfill a specific
service or business function (serve a particular goal). It can be visualized with a flowchart as a sequence of
activities. The term also includes the resulting exchanges between business partners, which is also named
“public process”. The public process makes abstraction of the back-end processes driving these exchanges.

Business Document: A Business Document is a set of structured information that is relevant to conducting
business, e.g., an order or an invoice. Business Documents may be exchanged as a paper format or
electronically, e.g. in the form of XML or EDI messages.

2.1.2 Testing Purposes and Requirements (à see Section 3.4)

System Under Test (SUT): An implementation of one or more eBusiness Specifications, which are part of
an eBusiness system which is to be evaluated by testing.

Conformance Testing: Process of verifying that an implementation of a specification (SUT) fulfills the
requirements of this specification, or of a subset of these in case of a particular conformance profile or level.
Conformance Testing is usually realized by a Test Bed connected to the SUT. The Test Bed simulates
eBusiness protocol processes and artifacts against the SUT, and is generally driven by the means of test
scripts.

Interoperability Testing: A process for verifying that several SUTs can interoperate at one or more layers of
the eBusiness interoperability stack (see “eBusiness Specification”), while conforming to one or more
eBusiness Specifications. This type of testing is executed by operating SUTs and capturing their exchanges.
The logistics of Interoperability Testing is usually more costly (time, coordination, set-up, human efforts)
thanConformance Testing. Conformance does not guarantee interoperability, and Interoperability Testing is
no substitute for a conformance Test Suite. Experience shows that Interoperability Testing is more

CWA XXXXX:XXXX

15

successful and less costly when Conformance of implementations has been tested first. The interoperability
test process can also be piloted by a Test Bed, using test scripts as in Conformance Testing.

Operational Testing Requirements: An operating environment requirement specifies the concerns of
defining, obtaining, and validating Test Items within a specific testing environment. It answers the question
what is the specific testing environment?

Verification Scope: The Verification Scope specifies the subject of testing. It answers the question: What
type of concern to test for? A type of concern is defined by (1) a specific aspect or quality of SUT to be
assessed and (2) an eBusiness Specification or Profile.

2.1.3 Testing Roles (à see Section 4)

Test Designer: A Test Engineer who develops Test Suites, Test Cases and Document Assertions. This
includes interpreting the B2B specifications, understanding – or writing – Test Assertions if any in order to
derive test Cases from these.

Test Manager: A role responsible for executing Test Suites or for facilitating their execution, including
related organizational tasks such as coordination with Test Participants.

Test Participant: The owner or operator of an SUT, typically the end-user, an integrator or a software
vendor. This role defines the Verification Scope and Testing Requirements.

Test Bed Provider: A general role that applies to anyone offering a Test Bed to Test Participants /
Managers / Designers.

Testing Capability Provider: A general role that applies to anyone offering a Testing Capability for use in a
Test Bed (e.g. offering an HL7 conformance Testing Capability that can be plugged-in a Test Bed platform).

2.1.4 Testing Framework and Architecture (à see Section 3.4)

Document Assertions Set: A Document Assertions Set (DAS) is a package of artifacts used to validate a
Business Document, typically including one or more of the following: a schema (XML), consistency rules,
codelists, etc. These artifacts are generally machine-processable.

Document Validator: A processor (a software application) that can verify some aspects of document
requirements, i.e. some validation assertions about a document such as an XML schema or some
consistency rules. A Document Validator may be specialized for some type of validation assertion (e.g. XML
schema validation, or semantic rules).

GITB Architecture: An architecture for a testing infrastructure comprising Test Beds and a Test Registry
and Repository. It comprises the following elements:

 (a) Test Artifacts that are processed by test beds

 (b) Test Services for supporting testing activities,

 (c) Test Bed Components and their integration,

(d) Test Registry and Repository for managing, archiving and sharing various Test Resources.

GITB Compliant Test Bed: GITB-compliance means either GITB-framework compliance or GITB-service
compliance. A GITB-framework compliant Test Bed follows the GITB recommendations with regard to its
functional scope. A GITB-service compliant Test Bed is only required to follow the GITB recommendations
for its Service interfaces, and the Test Artifacts it produces.

GITB Methodology: provides guidelines for eBusiness testing. It assists in specifying the subject of testing
and the type of concern to test for (“what to test”). It also defines the means by which the testing goal is

CWA XXXXX:XXXX

16

achieved (“how to test”) and outlines typical testing scenarios (Standalone Document Validation, SUT-
Interactive Conformance Testing, Interoperability Testing).

GITB Testing Framework: The architecture, methodology and guidelines for assisting in the creation, use
and coordination of Test Beds. The GITB Testing Framework comprises the GITB Methodology and the
GITB Architecture for a modular testing infrastructure comprising Test Beds and a Test Registry and
Repository.

Legacy Test Bed: An existing Test Bed that has been developed prior to GITB recommendations. A Legacy
Test Bed can be made “GITB-service compliant” by extending it with a subset of the service interfaces
described in this report.

Test Agent: A processor – either a simple software testing application or a complete Test Bed – that plays a
secondary role in the execution of a Test Suite, i.e. is interacting either with a Test Bed or with a Web
browser for the purpose of assisting Test Suite execution. A Test Agent may simulate one party in the
execution of a Test Suite (e.g. send messages to an SUT or wait for messages from the SUT), or may be
specialized for the execution of some Test Case, or for executing a Document Validator. A Test Agent may
be either one or both of: (a) An interacting [Test] Agent if it is able to directly interact with an SUT e.g. to
execute parts of the Test Suite (e.g. simulates a business party in some Test Case), (b) A validating [Test]
Agent if it is able to verify conformance of some Test Items to an eBusiness Specification or to a profile.

Test Artifact: A Test Artifact is a document used as input or output of Test Beds. These documents may
represent various data objects, e.g. Test Cases, Test Assertions, Test Suite scripts, Test Reports, test logs.
A Test Artifact should be machine-readable (e.g. formatted in XML).

Test Assertion (Cf. OASIS Test Assertion Guidelines [TAG]): A Test Assertion is a testable or
measurable expression - usually in plain text or with a semi-formal representation - for evaluating the
adherence of an implementation (or part of it) to a normative statement in a specification. Test Assertions
generally provide a starting point for writing a conformance Test Suite or an interoperability Test Suite for a
specification.

Test Bed: An actual test execution environment for Test Suites or Test Services. In the context of this
document, this generic term applies by default to various operational combinations of components provided
by or developed according to the (GITB) Testing Framework.

Test Bed Architecture: A particular combination of components and relationships among the components,
in a software system design based on Testing Framework resources and definitions and intended to perform
testing operations in accordance with use case requirements.

Test Bed Component: A component of a Test Bed that executes a function required for conformance and
interoperability testing. Either a core Test Bed platform component (performing an internal test Bed function,
e.g. Test Suite deployment) or a user-facing component (e.g. a Test Suite editor), or a component providing
a specific Testing Capability (e.g. a Document Validator).

Test Case: A Test Case is an executable unit of verification and/or of interaction with an SUT, corresponding
to a particular testing requirement, as identified in an eBusiness Specification. Each test case includes: (1) a
description of the test purpose (what is being tested - the conditions / requirements / capabilities which are to
be addressed by a particular test), (2) the pass/fail criteria, (3) traceability information to the verified
normative statements, either as a reference to a test assertion, or as a direct reference to the normative
statement (Cf. OASIS Test Assertion Guidelines definition [TAG]).

Test Scenario: A Test Scenario is an abstract definition of the testing process to perform a specific set of
validations needed to perform conformance or interoperability testing based on a specification.

Test Description Language: In the eBusiness domain, Test Description Language (TDL) is a high-level
computational language capable of expressing Test Case and Test Suite execution logic and semantics.

Test Execution Log: (A specific kind of Test Artifact). Message capture or other trace of observable
behavior that results from SUT activity. It is a collection of Test Items, subject to further verification or
analysis.

CWA XXXXX:XXXX

17

Testing Capability: A general term to designate the set of resources (Test Bed Components, test logic or
test configuration artifacts) supportive of a particular test function or of a Test Suite execution, typically
related to an eBusiness standard. All Testing Capabilities (plug-in components and/or artifacts) are typically
add-ons to a Test Bed platform. They may be added to or removed from a Test Bed depending on the
testing needs without modifying the code of the Test Bed but instead via a configuration change – they do
not represent core functions of such a platform. Examples are:

• Testing Capabilities that relate to a particular eBusiness Specification, e.g. an “HL7 document Testing
Capability” involves a set of resources necessary to validate HL7 documents: an HL7 document
assertion set (test logic definition) combined with a Document Validator component (the processor of this
test logic). An “ebMS2.0 messaging adapter” Testing Capability is an ebMS2.0 Adapter Test Bed
Component that will enable Test Suites to use ebMS2.0 messaging during execution. A Test Bed with
HL7 validation capability will be said to be “HL7 validation-capable”, or with ebMS2.0 messaging
capability to be “ebMS2.0 messaging capable”.

• Some Testing Capability components are not associated with a specific eBusiness Specification or
standard, but rather with a specific test logic standard such as XML schema or a particular TDL.
Processors for such standards (e.g. XML schema validator, TDL script interpreter) are also considered
as Testing Capability components.

Testing Resource: A generic term to designate any part of a Test Bed (Test Artifact, Test Service interface,
core or plug-in Test Bed Component), or a combination of these.

Testing Framework (see GITB Testing Framework).

Test Item: A unit of data to be verified, e.g. a document, a message envelope, an XML fragment. In the B2B
or eBusiness environment, Test Item can be message instance, event, or status report that is obtained from
an SUT for the purposes of assessing conformance or interoperability of the SUT (see Conformance
Testing,Interoperability Testing).

Test Registry and Repository (à see Part III): A component for managing, archiving and sharing
distributed testing resources.

Test Report: documents the result of verifying the behavior or output of one or more SUT(s), or verifying
Test Items such as Business Documents. It is making a conformance or interoperability assessment (see
Conformance Testing and Interoperability Testing). It is generally intended for human readers (although
possibly after some rendering, e.g. HTML rendering in a browser or after a translation XML to HTML).

Test Services: These services allow for managing Test Artifacts (design, deploy, archive, search) as well as
controlling the major Test Bed functions (test execution and coordination).

Test Step: A unit of test operation(s) that translates into a controllable, separate unit of test execution.

Test Suite: (A kind of Test Artifact). A Test Suite defines a workflow of Test Case executions and/or
Document Validator executions, with the intent of verifying one or more SUTs against one or more eBusiness
Specifications, either for conformance or interoperability.

Test Suite Engine: A Test Suite Engine (or "Test Suite Driver") is a processor that can execute a Test Suite,
or has control of the Test Suite main process execution in case it delegates part of the execution - e.g. some
Test Cases or some validation tasks - to specialized Test Agents or to a Document Validator.

CWA XXXXX:XXXX

18

2.2 Abbreviations

AIAG Automotive Industry Action Group

B2B Business-to-Business

B2C Business-to-Consumer

B2G Business-to-Government

CDA Clinical Document Architecture

DAS Document Assertion Set

eAC ebXML Asia Committee

ebBP ebXML Business Process

eBIF eBusiness Interoperability Forum (eBIF)

EDI Electronic Data Interchange

EIRA European Interoperability Reference Architecture

GITB Global eBusiness Interoperability Test Bed

GUI Graphical User Interface

HL7 Health Level Seven

HTML Hypertext Markup Language

IDEI Integrated Development Environment

IHE Integrating the Healthcare Enterprise

MOSS Material Off-Shore Sourcing

NHIS National Health Information System

PEPPOL Pan-European Public Procurement

PoC Proof-of-Concept

SDO Standards Development Organization

SOAP Simple Object Access Protocol

SUT System Under Test

TAG Test Assertion Guidelines

TAPM Test Artifacts Persistence Manager

TDL Test Description Language

TPL Test Presentation Language

TRR Test Registry and Repository

CWA XXXXX:XXXX

19

XML Extensible Markup Language

CWA XXXXX:XXXX

20

Part I: Motivation for eBusiness Testing and Overview of GITB Testing Framework

Part I summarizes the motivation for eBusiness testing and provides an overview of the GITB Testing
Framework. It is relevant for the following target groups: eBusiness users, standard development
organizations, industry consortia, testing experts and all other stakeholders.

3 Motivation

3.1 Testing as a Key Prerequisite to eBusiness Interoperability

In the move towards globally networked enterprises, eBusiness scenarios are to support increasingly
complex interactions among a larger number of organizations from industry, governmental and public
sectors. While eBusiness scenarios are implemented and adopted at a global level, interoperability has
become a major concern. Consequently, organizations from private and public sectors as well as technology
and software providers are engaged in cooperation for the development of vertical industry standards.
However, it can be noticed that it is still cumbersome for software vendors and end-users to demonstrate full
compliance with the specified standards and to achieve interoperability of the implementations3. This is due
to a number of facts:

(1) Many standards development organizations (SDOs) and industry consortia are only in the process of
conceptualizing how they will ensure interoperability of standards’ implementations. They are unsure
how to provide adequate testing and certification services.

(2) eBusiness interoperability typically requires that a full set of standards – from open internet and Web
Services standards to industry-level specifications and eBusiness frameworks – are implemented.
We denote this set of standards as eBusiness Specifications that underlie the electronic business
relationship.

(3) As of today, there are only limited and scattered Test Beds. If Test Beds are provided by one of the
standards development organizations, they have a rather narrow focus on a particular standard. In
particular, they might not encompass testing the entire set of relevant eBusiness Specifications from
a company perspective, i.e. a “Profile”, and interactions in more complex Business Processes with
several partners.

The following section outlines the demand for eBusiness testing from the perspective of the relevant
stakeholders.
3.2 Stakeholders and their Interests in eBusiness Testing

The relevant stakeholders in eBusiness testing comprise end-users from private and public sectors, industry
consortia and SDOs, technology and software vendors, testing laboratories as well as public authorities and
governments.

End-users comprise all organizations – from private and public sectors – which implement eBusiness
scenarios. Their ultimate goal is to increase the efficiency and effectiveness of their organizations and to
keep up-to-date in solutions for enhanced customer experiences. eBusiness testing is of interest for them as
they:

(1) realize the benefits of eBusiness solutions more quickly, with less project risks, and

(2) avoid costs implied by investments in low quality, non-interoperable standards.

For end-users, the lack of eBusiness testing has negative impacts on project duration for on-boarding
business partners and is one of the root causes of significant B2B integration costs. While the ability of an
enterprise to quickly add new business partners is a key factor in determining the level of its business agility,

3 eBusiness W@tch Report on e-Business Interoperability and Standards: A Cross-Sector Perspective and
Outlook, 2005

CWA XXXXX:XXXX

21

most companies need 3 to 10 days or more to on-board new business partners4. The most negative effects
of a lack of testing, however, are errors that occur in productive eBusiness scenarios, i.e. if supply chain
operations are slowed down or customer requirements cannot be fulfilled as planned.

Industry consortia and formal SDOs are communities of end-users, public authorities and other interested
parties that act to achieve the following objectives:

(1) Maintain cohesive community acting on key set of industry issues leading to industry-driven,
voluntary standards development;

(2) Develop high quality, timely industry standards specifications in support of industry needs;

(3) Effect efficient implementation of the developed standards by the vendors to provide a rational
basis for the standards assessment;

(4) Enable straightforward and effective approaches for standards’ implementation assessment,
piloting, and eventual deployment.

For industry consortia, the lack of testing increases the risks that implementations of the specified standards
are not interoperable.

Software vendors that act to achieve the following objectives:

(1) Develop enterprise applications that are standards-compliant, and

(2) Effectively support their client base by achieving functional and interoperable dBusiness
solutions.

Software application vendors are struggling with the pure number and complexity of standards as well as the
low quality of eBusiness Specifications with regard to their consistency. Missing implementation guidelines
and missing Testing Capabilities increase their implementation efforts and the risks that their software
applications do not conform to eBusiness Specifications and / or are not interoperable with other
implementations.

Testing laboratories act to achieve the following objectives:

(1) Increase efficiency and reliability of interoperable implementation of standards;

(2) Assure unbiased and objective nature of the standards implementation assessment process.

From the perspective of national governments and the European Union lacking interoperability and poor-
quality standards harm innovation and competition, burn investments, and drain the growth potential of
markets. In their current efforts to modernize the EU ICT standardization policy, the European Commission
states the following policy goals:

• To provide industry including SMEs, with high-quality ICT standards in a timely manner to ensure
competitiveness in the global market while responding to societal expectations;

• To increase the quality, coherence and consistency of ICT standard, and

• To provide active support to the implementation of ICT standards.

eBusiness testing provides the necessary means to achieve these goals, as it contributes to solve quality
issues in standards development and addresses implementation issues which currently hamper the adoption

4 Forrester Research Inc. (2009): The Value of a Comprehensive Integration Solution, Forrester Research
Inc., Cambridge, 2009

CWA XXXXX:XXXX

22

of eBusiness standards. Consequently, eBusiness testing needs to be a cornerstone of EU ICT
standardization policy.

3.3 Categories of eBusiness Specifications

Doing business electronically requires that certain agreements are in place between two or more partners in
order to conduct eBusiness transactions. We denote these agreements as the eBusiness Specifications
governing an electronic business relationship. An eBusiness Specification is associated with one or more of
three different layers in the eBusiness interoperability stack56 and often relies on standards that have been
developed or are still under development (Table 3.1)

1. Transport and Communication (Messaging) Layer: How do organizations communicate
electronically?
This layer addresses technical interoperability. Relevant specifications cover the range from
transport and communication layer protocols like HTTP to higher level messaging protocols such as
Simple Object Access Protocol (SOAP) or ebXML Messaging. Furthermore, security, reliability and
other quality of service protocols and extensions over the transport and communication protocols are
also considered in this layer.

2. Business Document Layer: What type of information do organizations exchange?
This layer addresses the semantic interoperability and specifies the form and content of Business
Documents which are exchanged electronically. Specifications may relate to:

• Document structure, i.e. definition of the document syntax (e.g. XML), the naming and
design rules (e.g. rules for generic Business Document structure, as specified by OAGIS
BOD architecture) and the assembly of the document (e.g. rules for the assembly of
Business Documents, as defined by OAGIS BOD architecture);

• Document semantics, i.e. the definition of document and fields (e.g. an XML document
definition) and their meaning including reference to external code lists, taxonomies and
vocabularies (UN/CEFACT Core Component Library, UBL Component Library), and

• Business rules that define restrictions or constraints among data element values.

3. Business Process Layer: How do the organizations interact?
Business Processes address organizational interoperability. Specifications at this level describe how
Business Processes are organized across organizational boundaries. The Business Process layer,
either presented in a formal Business Process specification standard such as ebXML Business
Process Specification Schema (BPSS) or with an informal workflow definition like flowcharts or
interaction diagrams, provides a message choreography, exception flows (error handling) and other
business rules for the eBusiness application roles participating in the process.

In addition to these layers, an eBusiness Specification may rely on profiles which define cross-layer
dependencies and further restrictions on the single layers.

5 CEN ISSS: eBUSINESS ROADMAP addressing key eBusiness standards issues 2006-2008.

6 Legner, C.; Vogel, T. (2008): Leveraging Web Services for Implementing Vertical Industry Standards: A Model for
Service-Based Interoperability, in: Electronic Markets, 18, 1, 2008, pp. 39-52.

CWA XXXXX:XXXX

23

Table 3-1: eBusiness Specifications

3.4 eBusiness Testing

3.4.1 Conformance and Interoperability Testing

From a general perspective, two types of testing are relevant in the context of eBusiness:

• Conformance testing involves verifying whether an eBusiness implementation conforms to the
underlying eBusiness Specifications. This is the first step toward interoperability with other
conformant systems as prescribed by the specification.

• Interoperability testing is verifying that two or more eBusiness implementations actually are able to
intercommunicate based on some exchange scenarios. This form of testing is generally more
difficult to automate than Conformance Testing, and is more effort intensive in terms of human
involvement and coordination.

Experience shows that only through conformance and Interoperability Testing, correct information exchange
among eBusiness implementations can be guaranteed and software implementations can be certified.
Conformance Testing is no substitute for Interoperability Testing, and vice-versa.

Experience also shows that the type and quality of the eBusiness Specifications impact whether
conformance and Interoperability Testing can easily be performed. If eBusiness Specifications comprise
substantial text descriptions, with some flow-charts or diagrams, these narrative or semi-formal
representations often leave many degrees of freedom for interpretation to the users. The efforts to prepare
test scripts and Test Cases are much higher than in the case of an eBusiness Specification which comprises
machine-readable representations, such as XML schemas, code lists, data models or formal representations
(e.g. in the Web Services Definition Language, or in ebXML Business Process (ebBP) – some examples for
machine-readable specifications are depicted in the right column of Table 3-1).

As of today, the existing testing tools, Test Suites and testing committees individually address a specific
standard or one of the above layers. However, integrated Testing Frameworks which do not hard-code a

CWA XXXXX:XXXX

24

specific standard at any layer (because different communities may use different standards) and are capable
of handling testing activities at all layers of the interoperability stack are necessary for conformance and
Interoperability Testing.

3.4.2 Testing Context and Stakeholders

eBusiness testing is performed in different contexts with different business rationale and stakeholders:

(1) Standardization initiated by a standard development organization (SDO) or an industry
consortium (Figure 3-13-1):
An SDO or industry consortium develops an eBusiness Specification (or Profile) and deploys it to the
community of users, software vendors etc. In this case, testing occurs during standard development
(in order to test conformance with other specifications, such as Naming and Design Rules) for quality
assurance of the developed eBusiness Specifications. Testing also occurs during standard
deployment to ensure the quality and the interoperability of the implementations. Testing may lead to
certification of software or productive implementations.

Figure 3-1: Testing Context “Standardization”

(2) “Onboarding” of new business partners initiated by user company (Figure 3-2Figure 3-23-2):
In this case, a company defines eBusiness Specifications and imposes their implementation on all
business partners. Testing is performed as part of the so-called ”onboarding process“ of partners.

CWA XXXXX:XXXX

25

Figure 3-2: Testing Context “Onboarding”

3.5 Benefits of a Global eBusiness Interoperability Test Bed

To summarize, without eBusiness testing the potential of standard setting is not fully exploited and the wide-
spread adoption of eBusiness standards will not be possible. Hence, the rationale for GITB can be
summarized as follows:

(1) Efficient allocation of resources and efforts in eBusiness implementation projects (less resources
will be spent to overcome low quality, conflicting or fragmented standards),

(2) Higher quality of eBusiness standards and mitigation of systemic risks in the eBusiness
community, and

(3) Improvement of the eBusiness standards development and diffusion process.

More attention to testing, visibility of outcomes and feedback from testing to industry consortia and SDO's
will imply increased attention to quality of standards and their implementation, and to a crisp boundary
between commons (standards as public resources) and proprietary assets.

CWA XXXXX:XXXX

26

4 GITB Principles and Testing Framework

GITB emphasizes the modularity and reusability of a Test Bed design and the easy plug-in of existing and
future Testing Capabilities for state-of-the-art eBusiness Specifications. In proposing a Testing Architecture,
GITB enables the coordination of multiple collaborating Test Beds in a network of Testing Resources,
offering Testing Capabilities for eBusiness Specifications that can be used either directly by Test
Participants, or by other Test Beds.

4.1 Objectives and Principles

The following objectives and principles were guiding the GITB work and should be met by the GITB
Architecture, the underlying Testing Framework and the Test Beds:

• Coverage of all eBusiness Interoperability Layers: In view of the increasing number of eBusiness
Specifications that are implemented and adopted at a global level, testing has to address all
interoperability layers (i.e. business processes and choreography, business documents, transport
and communication protocols) as well as profiles of them.

• Testing Anywhere, Anytime: Interoperability and Conformance Testing should not be restricted in
time and place. Software vendors and end-users should be able to test their implementations over
the Web anytime, anywhere and with any parties willing to do so. Interoperability Testing is expected
to be repeated on a regular basis, as B2B networks and systems evolve continuously due to new
versions of eBusiness Specifications, upgrades of eBusiness systems, changing business
communities, and changing business requirements.

• Reduction of Time Spent in Testing: Considering the amount of Test Cases necessary to cover
the conformance or Interoperability Testing requirements of eBusiness Specifications, the time spent
by participants during the testing process should be significantly reduced by a testing methodology
that favors reuse, automation and test integration. Partial coverage of the eBusiness stack by using
disparate, unrelated tools for each layer is error prone and costly in terms of integration efforts and
skills. The GITB Testing Framework aims to provide a comprehensive approach to eBusiness testing
by integrating configuration management and other preliminary Test Steps into the testing process.

• Ease of Design and Use: The Test Bed will aim at the “low cost of entry” for its users and hence
provide a graphical environment where a Test Designer can assemble the reusable Test Cases for
conformance and Interoperability Testing.

• Independence of Test Bed design from the eBusiness Specifications: “Hard-coded” test logic in
one-off Test Bed implementations is not desirable due to opacity, maintenance difficulties, non-
reusable skills and platforms. The Test Bed design(s) have to be independent from eBusiness
Specifications to be tested for.

• Modularity: Current eBusiness Specifications specify a variety of messaging protocols, business
document formats or choreographies. In order to support all of these and test them, the Test Bed
should be adaptable and modular. Therefore, it is necessary to define interfaces for several layers
and facilitate plug-in modules supporting different protocols or formats implementing the specified
interfaces.

• Reuse of existing Test Beds and Test Suites: A “Service” approach allows for reuse and leverage
of existing Test Beds (legacy or not) and Test Suites. This reuse can be accomplished at design time
– by creating Test Suites from existing components, assembling and deriving Test Cases from
existing ones, reusing similar design patterns – or at run-time be enabling a distributed execution of
a Test Suite over cooperating Test Beds.

• Flexibility in Architecture: The Testing Framework should allow for flexibility in architecture Test
Bed designs. It may be instantiated, e.g. as centralized Test Bed or as distributed Test Bed using a
service-oriented approach.

CWA XXXXX:XXXX

27

• Standardized and Innovative Testing Methodologies will ensure the successful development of
testing of comprehensive eBusiness Specifications and Profiles.

4.2 Synthesis of GITB Testing Framework

The GITB Testing Framework focuses on the architecture, methodology and guidelines for assisting in the
creation, use and coordination of Test Beds.

 The GITB Testing Framework’s constituents are two fold:

1. The GITB Methodology provides guidelines for eBusiness testing. It assists in specifying the
subject of testing and the type of concern to test for (“what to test”). It also defines the means by
which the testing goal is achieved (“how to test”) and outlines typical testing scenarios (Standalone
Document Validation, SUT-Interactive Conformance Testing, Interoperability Testing).

2. the GITB Architecture allows for a network of Test Beds to share Testing Resources and Testing
Capabilities by means of services, yet also recommends an internal Test Bed design that promotes
modularity and reuse.

The objectives in focusing on the definition of a Testing Framework and Architecture – as opposed to
defining a specific Test Bed design – are:

• To define a general methodology and best practices related to all of the above, so that a common
set of skills in designing tests and operating them, may be shared and applied across eBusiness
disciplines.

• To promote reuse of functional components across eBusiness Test Beds while allowing variability in
Test Bed architectural options,

• To allow for the portability and reuse of Test Artifacts across Test Beds by defining some level of
standardization of these, and by facilitating their archival and discovery,

• To ensure the use of common design concepts across Test Beds, thus promoting a common
understanding across eBusiness communities, and the same governance options,

4.3 Roles within the Testing Framework

The following roles, which generally correspond to different categories of Test Bed users and providers, are
identified and supported by the Testing Framework:

• Test Designer: this role involves all tasks related to the creation of a Test Suite or of its parts (Test
Cases, document assertion sets, configuration artifacts). The Test Designer may also be responsible
for the creation of the set of Test Assertions from which Test Suite/Cases or Document Assertion
Sets will be derived. S/he must have a good understanding of the eBusiness domain and
specification(s) addressed by the Test Suite. S/he must also understand the testing conditions and
constraints under which the Test Suite and Test Bed will be used, and the variability that the Test
Suite must offer with respect to its reuse. The Test Designer is expected to be familiar with the
Testing Framework methodology and best practices.

• Test Participant: The owner or operator of an SUT, typically the end-user, an integrator or a
software vendor. This role defines the Verification Scope and Testing Requirements. This role is
generally held by someone responsible for an eBusiness implementation, and having business
domain expertise.

• Test Manager: A role responsible for executing Test Suites or for facilitating their execution,
including related organizational tasks such as coordination with Test Participants. The Test Manager
is an expert in Test Suites, and in the logistics involved in running tests. S/he is generally using the
Test Bed on behalf of the Test Participants, or assisting the Test Participant in using the Test Bed,

CWA XXXXX:XXXX

28

e.g. for configuring and deploying a Test Suite before execution, and for searching/discovering the
appropriate Test Suite in the Test Repository. S/he is also is familiar with the Test Suite logic and
related eBusiness domain. Test Participants may act as Test Manager, if they are knowledgeable in
testing.

• Test Bed Provider: This role is about operating the Test Bed itself as a server or an application
service. It also may extend to the actual development and evolution of the Test Bed from Testing
Framework resources and components (as obtained from the Test Repository). The Test Bed
Operator is responsible for keeping the Test Bed functionally operational, and represents the Test
Bed owning party for any contractual relationship with users, i.e. all other roles.

4.4 GITB Methodology

4.4.1 Using Test Assertions

Ideally, a set of Test Assertions have been defined for an eBusiness Specification before a Test Suite and
Test Cases are developed. Test Assertions provide a way to bridge the narrative of an eBusiness
Specification and the Test Cases for verifying conformance (or interoperability). Test Assertions help to
interpret the specification statements from a testing viewpoint. Test Cases should then be derived from such
Test Assertions, as illustrated in Figure 4-14-1.

Figure 4-1: The Role of Test Assertions

Test Assertions provide a starting point for writing conformance and interoperability Test Suites. They
simplify the distribution of the test development effort between different groups: often, Test Designers are not
experts in the specification to be tested, and need guidance. By interpreting specification statements in terms
of testing terms and conditions, Test Assertions improve confidence in the resulting Test Suite and provide
the basis for coverage analysis (estimating the extent to which the specification is tested). OASIS has
developed Test Assertions Guidelines (TAG) that can be used to help developing Test Assertions.

4.4.2 Standalone Document Validation

Document validation – also sometimes called “Instance” or “conformance/unit” testing – is a particular form of
Conformance Testing which verifies a Test Item (e.g., an HL7 V2 message) against the rules defined in the
specification. This form of testing does not directly involve a System Under Test (SUT), but rather a testing
artifact (Test Item) that was produced by the SUT. Examples of such testing include validating a Clinical
Document Architecture (CDA) document instance against the CDA general rules and document type rules,
and validating an HL7 V2 message instance against an HL7 V2 conformance profile.

CWA XXXXX:XXXX

29

Figure 4-2: Workflow of a Standalone Document Validation

In “standalone” document validation, the document under test is obtained by a Test Participant, who directly
submits the document to and gets the Test Report from the Test Bed. This document validation is then
disconnected from any SUT communication, or larger Test Suite execution, as the Test Participant directly
controls all inputs to the Test Bed.

4.4.3 SUT-Interactive Conformance Testing

Conformance Testing is defined as verifying an artifact (e.g., an HL7 V2 message) against the rules defined
in the specification. Interactive Conformance Testing involves direct interaction between Test Bed and SUT,
combined with dynamic validation of SUT outputs (document validation). The document validation is usually
delegated by the Test Suite engine to a Document Validator.

Figure 4-3: Sample Workflow in Interactive Conformance Testing

In such interactive Conformance Testing, the Test Participant (or Test Manager) only needs to interact with
the Test Bed to control the overall execution and get the final report.

4.4.4 Interoperability Testing

Interoperability is defined as the ability of two SUTs to interact with each other in compliance with the
specification. This interaction usually involves data artifacts (e.g. messages) produced by one SUT and
consumed by the other. Interoperability Testing (see definition in section 2.1.2) can be conducted in different
modes:

(1) Passive Interoperability Testing: in this mode, the SUTs are not controlled by the Test Suite, i.e. by a
Test Bed. The SUTs interact on their own or under regular business activity. The interoperability Test
Suite only verifies captured traffic: it is a validating Test Suite.

(2) Directly driven Interoperability Testing: in this mode, the interoperability Test Suite actively drives
one or more SUTs in order to cause them to interact: it is an interacting Test Suite. In addition, the
Test Suite (or another one, in case of “two-phase testing” – see next section) does the verification of
captured traffic.

CWA XXXXX:XXXX

30

(3) Indirectly driven Interoperability Testing: in this mode, the SUTs are controlled indirectly by the Test
Bed. The interoperability Test Suite interacts using a different channel with an entity controlling the
SUT – e.g. sends an email to a Test Participant asking for initiation of a message from or to the SUT.
In addition, the Test Suite (or another one, in case of “two-phase testing” – see next section) does
the verification of captured traffic.

Ideally, the message capture should not interfere with the way the SUTs interoperate as they would under
real business conditions. The three most common ways to capture message traffic between SUTs are:

a) Using a “man-in-the-middle” system operating and re-routing messages at transport level (e.g. an
HTTP proxy or a TCP intermediary). This is typically the least intrusive approach, although it
imposes restrictive conditions (the messages and sessions should not be encrypted).

b) Instrumenting of one of the SUT so that message capture is performed at the endpoint, e.g. on the
message handler of the SUT. Later on this message capture can be consolidated in a Test
Execution Log.

c) Configuring the sending SUT(s) so that they duplicate messages sent and forward a copy a
Monitoring component or directly to the Test Bed.

Figure 4-4: Basic Interoperability Testing

4.4.5 Proposed Testing Practices for SUTs

If possible, first perform Document/Message Instance Testing: The Document/Message Instance testing
eliminates the problems within a single document. The structure and the business rules are checked. After
passing the Document/Message Instance Testing, the SUT can guarantee that can generate valid
documents/messages.

Always perform Conformance Testing: The Document/Message Instance Testing can ensure that a SUT can
generate valid documents/messages. However, it cannot guarantee the SUT can send/receive these
messages/documents as defined in the standard. Therefore, through the Conformance Tests, a SUT is
tested to check whether it can send/receive messages in the order defined by the standard. In the
Conformance Tests, all the other roles that the SUT communicates according to the specific standard are

CWA XXXXX:XXXX

31

simulated by the testing applications or Test Beds. Therefore, the SUT is expected to behave as if it is in real
life settings. The business rules that should be applied across documents are also controlled in Conformance
Tests.

Perform Interoperability Testing after the Conformance Testing, if possible design interoperability Test Suites
so that they are not redundant with tests already done during Conformance Testing: Sometime fatal errors
can be found during the Interoperability Testing. If so, Test Suites must be designed in such a way that those
fatal errors are detected in the Conformance Testing. Through the interoperability tests more than one SUT
is tested. Their ability to act with real-life settings is tested. In the certification process, most of the time,
passing the Conformance Testing is sufficient. However, through Interoperability Testing, the interoperability
with other real-life SUTs is tested.

4.5 GITB Architecture

For further portability and reuse, the Testing Framework defines a modular architecture based on standard
Test Bed Component interfaces that allow for reusability of certain Testing Capabilities, and extensible plug-
in design. A key tenet of interoperability and reuse across Test Beds is an information model that
standardizes at appropriate levels the Test Artifacts to be processed (Test Cases, Test Suites, Test Reports,
test configurations, etc.).

Figure 4-5Figure 4-5 provides an overview of the GITB Testing Architecture and its key elements:

• Test Artifacts that are processed by a Test Bed:

(a) test logic documents (Test Suite definitions, document Test Assertions),

(b) test configurations documents (parameters and message bindings for Test Suites,
configuration of messaging adapters), and

(c) test output documents (test logs and Test Reports).

• Test Services definitions and interfaces. These services are about managing the above Test
Artifacts (design, deploy, archive, search) as well as controlling the major Test Bed functions (test
execution and coordination).

• Test Bed Components and their integration. These components are functionally defined. They are
of three kinds:

(a) Core Test Bed platform components providing basic features, integration and coordination
support to be found in any GITB-compliant Test Bed,

(b) Testing Capability components, that directly enable the processing of Test Suites (e.g. a Test
Suite engine, a Document Validator) and related tasks (e.g. send/receive messages),

(c) User-facing components, through which the users interact with the Test Bed for various
functions (e.g. Test Suite design, test execution).

• Test Registry and Repository for managing, archiving and sharing various Testing Resources.
This component is not considered as part of a Test Bed, as it is a Testing Resource that can be
independently deployed, managed and accessed. It supports the archiving, publishing and sharing of
various Test Artifacts (e.g. Test Suites to be reused, Test Reports to be published). It also provides
for storing and sharing Testing Capability components to be downloaded when assembling or
upgrading a test Bed (e.g. the latest version of a Test Suite engine, of a Document Validator).

CWA XXXXX:XXXX

32

Figure 4-5: Overview of the GITB Architecture

In the proposed architecture, the GITB Test Bed is perceived by its users (either persons with specific roles
or other Test Beds) as a set of Test Services. The Test Bed in itself allows for plug-in Testing Capabilities
(for example, Test Suite engines, specialized validation components, message adapters, etc.). These
Testing Capabilities can be supported either by existing (legacy) Test Beds, by remote services or by future
test components to be developed. The Test Bed is also a platform where various Test Suites or Document
Assertions can be deployed, i.e. it is not tied to a particular eBusiness Specification and its Test Suites.

The proposed architecture enables the coordination of several Test Beds specialized for the testing of
different eBusiness Specifications, or for different testing procedures. Some of these Test Beds will be
developed according to GITB recommendations, while others are Legacy Test Beds that have been
augmented with GITB-compliant Service interfaces. Both types of Test Beds can then be integrated in the
same network by providing access via similar Service interfaces. These Service interfaces can either be
directly accessed by users, e.g. a Service Manager accessing the test services from a public interface (Web
for instance), or they can be accessed by some other Test Beds, e.g. when a Test Suite executing on a Test
Bed needs to delegate some document validation to another specialized Test Bed.

The Testing Capabilities (either provided by local components or by remote services) support the
conformance and Interoperability Testing of any eBusiness Specification. For example, the purpose of a
Document Validation capability is to validate a given document according to a set of syntactical or semantic
restrictions specified in an eBusiness Specification. Such capability can be implemented as a local,
pluggable (and reusable) component, or as a remote service from another Test Bed. Similarly a Messaging
Adapter capability aims to communicate with the SUTs based on specified transport and communication
protocols and to provide some level of messaging validation. Such a capability can be provided as a
component that has been downloaded from a common repository for reuse and local integration, or could
also be provided as a remote service, e.g. from a Test Bed or Test Agent specialized in providing various
messaging protocols. Additional Testing Capabilities or services may be added to validate the conformance
to a specified message choreography and business rules. For each of such capability, a common interface
will be defined so that any test service provider can implement a test component or service specific to a
certain standard and can plug-in the Testing Capability to the GITB Test Bed. In GITB phase 3, further
capability types other than messaging and document validation may be identified and the architecture may
be extended accordingly by the same approach.

This architecture promotes the reusability of Testing Resources and Capabilities among different domains
and different standards. As shown in Figure 4-5Figure 4-5, a Test Designer developing a Test Case for a
certain eBusiness profile or standard may need a test service (e.g. profile may state that in a certain

CWA XXXXX:XXXX

33

transaction the communication should be performed via ebXML messaging, so we need ebXML
communications with the SUT) which may already be developed and published by other Test Designers and
test service providers working for another domain or standard. In this way, the GITB Testing Framework
leverages the existing, distributed test services related to eBusiness testing and allows users to discover
them and access them via the Test Registry and Repository.

CWA XXXXX:XXXX

34

Part II: Core Test Bed Implementation Specifications and Proof-of-Concept

GITB Phase 3 complements and refines the GITB Testing Framework and the Test Bed Architecture defined
in the previous phases by

• defining the implementation specifications for GITB service interfaces and selected artifacts to
achieve interoperability between testing facilities developed for different domains, specifications, or
regions.

• designing a reference Test Bed Architecture and underlying Test Description Language based
on GITB principles for stakeholders in different domains for their future testing facilities (domains that
do not have structured conformance and interoperability test frameworks)

• developping the open source Proof-of-Concept Implementation of a Test Bed based on GITB
specifications and architecture.

Part II of this report summarizes GITB Phase 3 outcomes related to the Core Test Bed. It is relevant for
testing experts and architects that are interested in the detailed Test Bed Architecture and Specifications.

5 Overview of Core Test Bed Implementation Specifications

5.1 Relevant Core Test Bed Service Specifications and Artifacts

The GITB Service Specifications are a group of specifications for testing facilities, Test Beds, content
validation tools, simulators, messaging handlers to achieve reusability of testing functionalities among them.
The following are brief descriptions for each of them:

• The GITB Content Validation Service Specification defines a service where any content validation
tool can implement to wrap its functionalities and serve them as a content validation service to other
stakeholders. In some domains, there are already such services used by testing systems to delegate
the content validation job to remote services. The Gazelle External Validation Service (EVS) in
eHealth domain and PEPPOL Document Validation Service in eProcurement domain are some
examples in this respect.

• In conformance and interoperability testing, testbeds need mechanisms to communicate with SUTs
based on the protocol specified in the target specification or in other words simulate a specific actor
to handle these communications. Communication protocols are used among different domains and
reuse of these simulation facilities among the testing frameworks of different domain will be very
useful. The GITB Messaging (Simulator) Service Specification defines a service to achieve this
interoperability between testbeds and simulators. For example, an AS4 protocol simulator can be
used by different domains in their testing frameworks to establish AS4 communication with SUTs.
Then these domains will only concentrate on their specific testing requirements based on their
extensions or profiling approach over the AS4 protocol.

• In addition to the reusability of more granular testing facilities, accessing testbeds' facilities in a
common way will also be very useful for conformance and interoperability testing. The GITB Test
Bed Service Specification will define this common service definition to drive a testbed remotely for
the execution of a complete conformance or interoperability testing scenario. As specifications
referring other specifications for conformance (profiles, customizations) are becoming more and
more common in many domains, a testbed using another testbed's facilities is also becoming a basic
requirement. With this specification, it is also possible to implement individual test monitoring
interfaces driving multiple testbeds for test scenario executions.

All these services require a common model for a number of test artifacts:

• All these services require a common model to report the results of the performed tests so that the
client side can understand the results and render them to its users. The GITB Report Format
Specification defines a model for representing test reports. It is a wrapper format to describe the
brief summary of the results. Based on the validation methodology any report format (ex:

CWA XXXXX:XXXX

35

Schematron Validation Report Language for schematron validations, a proprietary format for XML
schema validations) can be used within this model.

• In order to realize GITB Test Bed Service, a common model is needed to describe a test scenario
between the testbeds. As different testbeds use different models or languages to represent
executable test scenario descriptions, it is not possible to find a common executable model. In fact, it
is not necessary. The model only needs to define the basics of the execution flow by describing it in
terms of granular test steps with a simple categorization. The GITB Test Presentation Language
Specification provides this model to represent a conformance or interoperability test scenario.

In addition to the service specifications, the GITB reference Test Bed Architecture is designed based on
GITB principles in this phase. An important part of this architecture is the GITB Test Description Language
(TDL) that defines the high level executable scripting language for the Test Bed. Stakeholders that need but
do not have such conformance and interoperability test frameworks can use this architecture and the TDL as
reference to build one for their specific needs. As the architecture is designed with GITB principles, the
resulting testing frameworks will facilitate reusing of testing capabilities among different stakeholders and
domains.

Figure 5-1: GITB Implementation Specifications

5.2 GITB Namespaces and Common Element Definitions

In this section, we describe the common element definitions used by all Test Bed Implementation
Specifications. We recommend using this section as a reference while reading other parts.

Table 5-1: GITB Namespaces

Prefix XML Namespace Comments

gitb: http://www.gitb.com/core/v1/ The core schema defining the common elements for other models.

vs: http://www.gitb.com/vs/v1/ GITB Validation Service namespace

CWA XXXXX:XXXX

36

ms: http://www.gitb.com/ms/v1/ GITB Messaging Service namespace

tbs: http://www.gitb.com/tbs/v1/ GITB Testbed Service namespace

tpl: http://www.gitb.com/tpl/v1/ GITB Test Presentation Language namespace

tr: http://www.gitb.com/tr/v1/ GITB Test Reporting Model namespace

tdl: http://www.gitb.com/tdl/v1/ GITB Test Description Language namespace

The <gitb:Metadata>is a common element to describe the metadata of the container element (ex: Testcase,
TestModule, TestSuite).

• title – Name of the container. Should be descriptive for users.
• type (0..1) – Only used for testcases and indicates the type of the test case (CONFORMANCE or

INTEROPERABILITY).
• description (0..1) – Long description of the container.
• version – Version of the container description
• authors (0..1) - List of authors who compose the container artifact
• issued (0..1) – Publication date for the container artifact
• modified (0..1) – Last modification date for the container artifact

The <gitb:TestRole> declares the actor in a Test Case definition that will take part in the test scenario;

• id – The unique identifier for the actor. It should be recommended to use URN format to uniquely
identify the actor for the related test bed.

• name – Short name given to the actor (for referencing actor within the test case definition).
• role – The role of the actor within the test scenario. Value should be used from the enumeration

(SUT, SIMULATED, MONITOR). If the test case aims to test (either conformance or interoperability
testing) an actor, the SUT role should be given. If the role of a given actor is played by the test
engine or some simulator within the test scenario, the SIMULATED should be used. The MONITOR
value is used for further scenarios representing users that do not involve in the target business
process but involve in the testing process for monitoring the test execution or perform manual
validations.

The <gitb:AnyContent> class is used to embed some content (ex: the message or document content) in a
container element related with a messaging, validation or user interaction operation in a generic way and
while transferring data between GITB modules/services. It describes the way to reach the content, abstract
type of the content (in the type system of Test Bed) and how it is serialized to the receiver module so that it
can parse the content accordingly.

• item (1..*) – AnyContent – If the content carries list of contents then this element recursively
represents the carried content. For simple contents only <gitb:value> element should be used. For
container types (list or map) each item represents the content of the container items.

• value (0..1) – The actual content itself (either in string or base64 encoded representation) or the
URL to access to the actual content.

• name – Name for the content item.
• embeddingMethod (0..1) – This attribute states the method that describes how the content is

embedded in the value part. The value should be from the enumeration <gitb:
ValueEmbeddingEnumeration> (BASE64, STRING, URI). The BASE64 indicates that the content
is embedded in the format of base64 encoded string within the value. The STRING indicates that the
xs:string representation of content is embedded into the value. Finally, URI indicates that an URL is
given in the value from which the actual content is accessible over the Internet. The default is
BASE64. type (0..1) – GITB enables implementers to extend the abstract type system of GITB when
implementing GITB compliant services and testbeds. This attribute indicates the type of the content
according to the type system of the target GITB compliant testbed or service. (ex: DICOM object,
EDI content, etc). See GITB Type system.

• encoding (0..1) – If the type is given this attribute provides the serialization format of the content for
the given abstract type (ex: XML serialization, JSON serialization, etc).

CWA XXXXX:XXXX

37

The <gitb:Parameter> defines a configuration parameter for any GITB module or service.

• name – Name of the parameter
• use (0..1) – Specifies whether parameter is required or optional for the operation. (R: required,

O:optional). Default is “R”.
• kind (0..1) – Configuration value can be simple string or a binary content read from a file and this

attribute indicates the kind of configuration (SIMPLE,BINARY). Default is SIMPLE.
• desc (0..1) –Describes the functionality of the configuration parameter within the related process.
• value – Default value of the configuration parameter if not provided within the operation.

The <gitb:TypedParameter> extends <gitb:Parameter> class to represent a typed value for input and
output definitions of modules, constructs, and services defined in GITB

• type – Identifier for abstract parameter type (Based on the type system of the target GITB Compliant
Service or Test Bed)

• encoding (0..1) – Identifier for the serialization format for the type (Based on the type system of the
testbed). The default encoding of the type should be assumed when this attribute is not supplied.

The <gitb:Configuration>element is used to provide the value of a configuration parameter for the container
construct.

• name – Name of the parameter
• value – Value of the parameter

The <gitb:ActorConfiguration> is used to provide configurations for each SUT in the process between two
testing facility.

◦ actor – Identifier of the actor that the configurations are supplied for.
◦ endpoint (0-1) – Identifier for the endpoint that the configurations are supplied for. If actor has

only one endpoint there is no need to supply it .
◦ config (1..*): <gitb:Configuration> – List of configurations for the given system (playing the

given actor)

The <gitb:Actor> element defines an actor in a testbed and declares the endpoints of the actor and the
required configuration parameters for those endpoints.

• name – Unique identifier of the actor (URN) within the testbed.
• desc (0..1) –The textual description of the actor
• endpoint (1..*) – <gitb:Endpoint> – The list of endpoint definitions.
◦ name – Name of the endpoint (should be unique within the Actor definition)
◦ config (0..*) – <gitb:Parameter> – Configuration parameters for the actor. When a SUT claims

conformance to this actor, before the execution of a related test scenario, the configurations
stated here should be collected from the SUT administrator.

5.2.1 XML Schema for Common Elements

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xsd:schema xmlns="http://www.gitb.com/core/v1/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.gitb.com/core/v1/" elementFormDefault="qualified" version="1.0">
 <xsd:element name="module" type="TestModule"/>
 <!--General Metadata element to describe the metadata of artifacts-->
 <xsd:simpleType name="ID">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[a-zA-Z0-9_]"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Metadata">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="type" type="TestCaseType" default="CONFORMANCE" minOccurs="0"/>
 <xsd:element name="version" type="xsd:string"/>
 <xsd:element name="authors" type="xsd:string" minOccurs="0"/>

CWA XXXXX:XXXX

38

 <xsd:element name="description" type="xsd:string" minOccurs="0"/>
 <xsd:element name="issued" type="xsd:string" minOccurs="0"/>
 <xsd:element name="modified" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ActorConfiguration">
 <xsd:sequence>
 <xsd:element name="config" type="Configuration" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="actor" type="xsd:string" use="required"/>
 <xsd:attribute name="endpoint" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <!-- List of Actor Definitions-->
 <xsd:complexType name="Actors">
 <xsd:sequence>
 <xsd:element name="actor" type="Actor" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- Complete Definition of an Actor-->
 <xsd:complexType name="Actor">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="desc" type="xsd:string" minOccurs="0"/>
 <xsd:element name="endpoint" type="Endpoint" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="ID" use="required"/>
 </xsd:complexType>
 <!--Endpoint definition-->
 <xsd:complexType name="Endpoint">
 <xsd:sequence>
 <xsd:element name="config" type="Parameter" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="ID" use="required"/>
 <xsd:attribute name="desc" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <!-- List of Testcase Role Definitions-->
 <xsd:complexType name="Roles">
 <xsd:sequence>
 <xsd:element name="actor" type="TestRole" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--List of Testcase Role definition-->
 <xsd:complexType name="TestRole">
 <xsd:sequence>
 <xsd:element name="endpoint" type="Endpoint" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="role" type="TestRoleEnumeration" use="required"/>
 </xsd:complexType>
 <!-- Configuration name-value pair -->
 <xsd:complexType name="Configuration">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <!-- Abstract TestModule definition -->
 <xsd:complexType name="TestModule">
 <xsd:sequence>
 <xsd:element name="metadata" type="Metadata"/>
 <xsd:element name="inputs" type="TypedParameters" minOccurs="0"/>
 <xsd:element name="outputs" type="TypedParameters" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string"/>
 <xsd:attribute name="uri" type="xsd:string"/>
 <xsd:attribute name="isRemote" type="xsd:boolean" default="true"/>
 <xsd:attribute name="serviceLocation" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <!-- Validation Module Definition-->
 <xsd:complexType name="ValidationModule">
 <xsd:complexContent>
 <xsd:extension base="TestModule">
 <xsd:sequence>
 <xsd:element name="configs" type="ConfigurationParameters" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="operation" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!--Messaging Module Definition-->
 <xsd:complexType name="MessagingModule">
 <xsd:complexContent>
 <xsd:extension base="TestModule">
 <xsd:sequence>
 <xsd:element name="actorConfigs" type="ConfigurationParameters"/>
 <xsd:element name="transactionConfigs" type="ConfigurationParameters" minOccurs="0"/>
 <xsd:element name="listenConfigs" type="ConfigurationParameters" minOccurs="0"/>
 <xsd:element name="receiveConfigs" type="ConfigurationParameters" minOccurs="0"/>
 <xsd:element name="sendConfigs" type="ConfigurationParameters" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="isProxy" type="xsd:boolean" use="optional" default="true"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!--List of configuration parameters-->
 <xsd:complexType name="ConfigurationParameters">
 <xsd:sequence>

CWA XXXXX:XXXX

39

 <xsd:element name="param" type="Parameter" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--List of typed paremeters-->
 <xsd:complexType name="TypedParameters">
 <xsd:sequence>
 <xsd:element name="param" type="TypedParameter" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--Parameter Definition-->
 <xsd:complexType name="Parameter">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="use" type="UsageEnumeration" use="optional" default="R"/>
 <xsd:attribute name="kind" type="ConfigurationType" use="optional" default="SIMPLE"/>
 <xsd:attribute name="desc" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <!--Typed parameter definition-->
 <xsd:complexType name="TypedParameter">
 <xsd:simpleContent>
 <xsd:extension base="Parameter">
 <xsd:attribute name="type" type="xsd:string" use="required"/>
 <xsd:attribute name="encoding" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <!-- Enumeration for test case types-->
 <xsd:simpleType name="TestCaseType">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="CONFORMANCE"/>
 <xsd:enumeration value="INTEROPERABILITY"/>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- Enumeration for usage indicator-->
 <xsd:simpleType name="UsageEnumeration">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="R"/>
 <xsd:enumeration value="O"/>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- Enumeration for usage indicator-->
 <xsd:simpleType name="ConfigurationType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SIMPLE"/>
 <xsd:enumeration value="BINARY"/>
 <!-- simple type, i.e. string -->
 <!-- binary type -->
 </xsd:restriction>
 </xsd:simpleType>
 <!--Representation (serialization) of a GITB value -->
 <xsd:complexType name="AnyContent">
 <xsd:choice>
 <xsd:element name="item" type="AnyContent" minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="value" type="StringUriOrBase64Type" minOccurs="1" maxOccurs="1" />
 </xsd:choice>
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="embeddingMethod" type="ValueEmbeddingEnumeration" use="optional" default="BASE64"/>
 <xsd:attribute name="type" type="xsd:string" use="optional"/>
 <xsd:attribute name="encoding" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <!-- Enumeration for embedding method for the value -->
 <xsd:simpleType name="ValueEmbeddingEnumeration">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="STRING"/>
 <xsd:enumeration value="BASE64"/>
 <xsd:enumeration value="URI"/>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- Type definition for the actual content-->
 <xsd:simpleType name="StringUriOrBase64Type">
 <xsd:union memberTypes="xsd:string xsd:base64Binary xsd:anyURI"/>
 </xsd:simpleType>
 <!-- Enumeration for representing the format of the given content-->
 <xsd:simpleType name="TestRoleEnumeration">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SUT"/>
 <xsd:enumeration value="SIMULATED"/>
 <xsd:enumeration value="MONITOR"/>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- Enumeration indicating the status of a test step execution-->
 <xsd:simpleType name="StepStatus">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="PROCESSING"/>
 <xsd:enumeration value="SKIPPED"/>
 <xsd:enumeration value="WAITING"/>
 <xsd:enumeration value="ERROR"/>
 <xsd:enumeration value="COMPLETED"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ErrorCode">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ACTOR_DEFINITION_NOT_FOUND"/>
 <xsd:enumeration value="ARTIFACT_NOT_FOUND"/>
 <xsd:enumeration value="CANCELLATION" />
 <xsd:enumeration value="DATATYPE_ERROR" />

CWA XXXXX:XXXX

40

 <xsd:enumeration value="INTERNAL_ERROR"/>
 <xsd:enumeration value="INVALID_SESSION" />
 <xsd:enumeration value="INVALID_TEST_CASE" />
 <xsd:enumeration value="MISSING_CONFIGURATION" />
 <xsd:enumeration value="INVALID_CONFIGURATION" />
 <xsd:enumeration value="TEST_CASE_DEFINITION_NOT_FOUND"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="ErrorInfo">
 <xsd:sequence>
 <xsd:element name="errorCode" type="ErrorCode" />
 <xsd:element name="description" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

CWA XXXXX:XXXX

41

6 Test Presentation Language (TPL)

Every Test Bed or testing tool uses some model to define the test execution flows for the
automated processing of test scenarios. Most of them use some type of scripting languages (ex:
TTCN3, OASIS TAML) to represent the execution model. Some of them do not have such a
concrete representation, but still have some abstract model behind which is implemented either
within a software or database. Generally, the details of these models are strongly dependent on
the underlying testbed architecture and technology. However, it is observed that these models and
approaches show strong similarities when we focus on the unit testing actions and their main
functionalities. For example, all test execution models have constructs to define a messaging step
between a SUT and the simulator or to define a verification step to validate message content. From
the user (SUT administrator) point of view, the important point is to be able to understand the
basics of the testing process (the test flow, what is realized in each step in general, and what is
expected from him and the SUT). The situation is similar for the scenarios, where a Test Bed
drives another Test Bed or testing tool to perform specific set of actions and tests. A common
abstract test scenario definition model will help us to establish this agreement among the
components (testbeds, tools, test monitoring environments) and users (software vendors, SDOs,
test developers) of our vision of global interoperability testing network.

The GITB Test Presentation Language (TPL) will provide the specification for this common
model or language to represent a conformance or interoperability test scenario. The resulting
language is neither a scripting language, nor used for automated test execution. Rather, its
purpose is to present the flow and the test steps in a granular way to users and other testing
software that want to interoperate with the testbed providing the test execution service for the
scenario. Any testbed can easily map their internal test execution models, or test scripting
languages to this abstract common model to describe its test scenarios to the outside world.

6.1 Abstract Model

Figure 6-1: Test Presentation Language Model

Figure 6-16-1: illustrates the abstract model of the TPL. The root element representing the test scenario is
the <tpl:Testcase>. Its attributes and elements are as follows;

CWA XXXXX:XXXX

42

• id – Attribute defines the unique identifier for the test case. It is recommended to use a URN for the
value of this attribute. (ex: urn:gitb:ihe:xds-document-source-conformace-test, urn:gitb:peppol:lime-
protocol-conformance-test)

• metadata:<gitb:Metadata> – Describes the metadata attributes (name, description, author, version,
etc) of the test case.

• actors (1..*): <gitb:TestRole> – Describes the actors in the business process defined by the test
scenario’s target specification (ex: Supplier in PEPPOL profiles, Document Consumer in IHE
profiles) and the role assignments regarding the testing process.

• preliminary (0..1): <tpl:Preliminary> – Describes the preliminary requirements that should be
shown to the SUT administrators before starting the test execution.

• steps: <tpl:Sequence> - List of test step descriptions that describes the flow and each test step.

The <tpl:Preliminary> element is a container for the preliminary steps in the test case;

• instruct (0..*): <tpl:Instruction> – Preliminary instructions for the SUT administrators that
describes some requirement regarding the test scenario.

• request (0..*): <tpl:UserRequest> – Preliminary requests from the SUT administrators related
with the test scenario. The SUT administrators are expected to provide the requested information
as an input to the test case definition where these inputs will be used later in the test execution
process. Inputs will be related with the test scenario requirements.

The <tpl:Sequence> element is a container for test steps that will be processed in the given order.

• steps (1..*) <tpl:TestStep> – <tpl:TestStep> is an abstract class that describes the granular unit
step of a test case. The Sequence class is a list of these test steps which will be executed in linear
order. Test steps are categorized in seven categories; VerificationStep, MessagingStep,
DecisionStep, FlowStep, LoopStep, ExitStep and UserInteractionStep and each extends the
TestStep definition.

 The <tpl:TestStep> is the abstract class that represents a test step in the definition.

• id – The unique identifier for the step within the test case definition. This identifier will be used to
bind test step reports to test steps. Since a test execution can include decision steps, concurrent
executions and loops, a special identification scheme is recommended for test step identification
(See Section 6.2).

• desc (0..1) – Textual description of the test step which can be shown to the user to describe what
this test step is doing and what is expected from the user.

The <tpl:VerificationStep> describes the actual validation or verification step (ex: XML schema validation of
message/document content, Schematron validation of message/document content, XPATH expression
validation of a value within the message/document content, or custom validation of a non-XML content).

The <tpl:MessagingStep> describes a messaging step between a SUT and a simulator or between two
SUTs (in interoperability tests). This step indicates that a message communication is expected between the
given actors at that time. The related SUT administrators should behave accordingly (drive the SUT) to
initiate the messaging if necessary (some messages are initiated by other messages without any manual
intervention with the user). Each <tpl:MessagingStep> represents only one way of communication, in other
words, for request-response type communication two <tpl:MessagingStep> should exist.

• from – Refers to the actor (Actor.name) which is expected to send the message.
• to – Refers to the actor which is expected to receive the message.

Test execution flows generally include decision points where the execution is continued on certain branch
based on a condition. The <tpl:DecisionStep> element defines such supplementary test steps. The desc
attribute should describe the condition in textual form in order to enable users understand the behaviour and
test flow.

CWA XXXXX:XXXX

43

• then (0..1):<tpl:Sequence> – Gives the sequence of test steps that test execution will follow when
the condition holds.

• else (0..1):<tpl:Sequence> – Gives the sequence of test steps that test execution will follow when
the condition does not hold.

The <tpl:FlowStep> element indicates the concurrent execution of the child sequences. The step is
completed when all branches are completed.

• thread (1..*): <tpl:Sequence> – The child sequences that are executed concurrently.

The <tpl:LoopStep> extending the <tpl:Sequence> indicates that child steps will be executed a number of
times in loop based on some condition. As the main aim of the TPL is showing the flow of the scenario and
describing it textually to the users, the looping condition should be described in the “desc” attribute textually.

The <tpl:ExitStep> indicates that the test execution will be stopped with this step.

The <tpl:UserInteractionStep> indicates that testbed will interact with the specified users in this step in
order to instruct them or get some input regarding test execution.

• with (0..1): Refer to the actor that this user interaction is performed with.
• instruct (0..*): <tpl:Instruction> – Indicates that an instruction will be shown to thespecified user
• request (0..*): <tpl:UserRequest> – Indicates that some input is requested from the specified user

The <tpl:Instruction> and <tpl:UserRequest> types extend <tpl:InstructionOrRequest> and they represent
an interaction step either an instruction for a SUT administrator (former) or an input request from a SUT
administrator (later).

• with – Refer to the actor (<gitb:TestRole>.name) that this instruction will be shown.

6.2 Test Step Identification

The basic requirement for the identification of test steps is that each step should have unique ids within the
same test case definition. However, we recommend a methodology to assign identifiers to test steps in order
to make them more readable and understandable. The test case definition with the TPL is in fact an
execution flow tree where each node is a test step. Traversal of this tree represents the execution order of
the test steps. The identification methodology is in fact an id scheme to represent this traversal. The
following rules are to follow while assigning ids to test steps;

• Test steps within the main sequence are assigned successive numbers starting from “1”. Therefore,
first test step in the sequence will be identified as “1”, second as “2”, and so on.

• If a step is <tpl:DecisionStep>, the child sequence “then” will be identified as the concatenation of
the id of <tpl:DecisionStep> with “[T]”. For example, if <tpl:DecisionStep> is the third step in the main
sequence, then sequence will be “3[T]”. Similarly, the “else” sequence will be identified as “[F]”.

• A step within a sequence is identified as the concatenation of the id given to the sequence, the dot
(“.”) and the successive numbering given to the step. For example, if we have a sequence identified
as 3[T], the first step will be “3[T].1”, and the second will be “3[T].2”.

• If a step is <tpl:FlowStep>, the child sequences will be identified with the concatenation of the id of
the <tpl:FlowStep> with the successive numbers for the child sequences within brackets. For
example, is <tpl:FlowStep> has id “3[T].2”, the first child sequence of <tpl:FlowStep> will be
“3[T].2[1]”, and the second child sequence will be “3[T].2[2]”.

• For a <tpl:LoopStep>, as the <tpl:LoopStep> is also a sequence the rule for child numbering of a
seuqnece is applicable. For example, if <tpl:LoopStep> is numbered as “5”, the first child will be
“5.1”.

• <tpl:UserInteractionStep> should be viewed as the <tpl:Sequence> and same numbering scheme
should be applied.

CWA XXXXX:XXXX

44

6.3 XML Schema for TPL

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xsd:schema xmlns="http://www.gitb.com/tpl/v1/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:gitb="http://www.gitb.com/core/v1/" targetNamespace="http://www.gitb.com/tpl/v1/"
elementFormDefault="qualified" version="1.0">
 <xsd:import namespace="http://www.gitb.com/core/v1/" schemaLocation="gitb_core.xsd"/>
 <xsd:element name="testcase" type="TestCase"/>
 <xsd:complexType name="TestCase">
 <xsd:sequence>
 <xsd:element name="metadata" type="gitb:Metadata"/>
 <xsd:element name="actors" type="gitb:Roles"/>
 <xsd:element name="preliminary" type="Preliminary" minOccurs="0"/>
 <xsd:element name="steps" type="Sequence"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="Sequence">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="msg" type="MessagingStep"/>
 <xsd:element name="decision" type="DecisionStep"/>
 <xsd:element name="loop" type="Sequence"/>
 <xsd:element name="flow" type="FlowStep"/>
 <xsd:element name="verify" type="TestStep"/>
 <xsd:element name="exit" type="ExitStep"/>
 <xsd:element name="interact" type="UserInteractionStep"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="TestStep">
 <xsd:sequence>
 <xsd:element name="desc" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="DecisionStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:element name="then" type="Sequence"/>
 <xsd:element name="else" type="Sequence" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="ExitStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="FlowStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:element name="thread" type="Sequence" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="UserInteractionStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="instruct" type="Instruction"/>
 <xsd:element name="request" type="UserRequest"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="with" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Preliminary">
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="instruct" type="Instruction"/>
 <xsd:element name="request" type="UserRequest"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Instruction">
 <xsd:complexContent>
 <xsd:extension base="InstructionOrRequest"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="UserRequest">
 <xsd:complexContent>
 <xsd:extension base="InstructionOrRequest"/>
 </xsd:complexContent>
 </xsd:complexType>

CWA XXXXX:XXXX

45

 <xsd:complexType name="InstructionOrRequest">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:attribute name="with" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="MessagingStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:element name="from" type="xsd:string"/>
 <xsd:element name="to" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

CWA XXXXX:XXXX

46

7 Test Reporting Format

Test Reports document the result of verifying the behavior or output of one or more SUT(s), or verifying Test
Items such as Business Documents. The following sections define a model for representing test reports so
that the client side can understand the results and render them to its users.

7.1 Abstract Model

Figure 7-1: GITB Test Reporting Model

Figure 7-17-1: illustrates the abstract model for test reporting. The <tr:TestCaseReport> represents the
report for a test case execution and composed of <tr:TestStepReport> elements each represent the report
for the defined test step in the TPL.

The <tr:TestCaseReport> contains the following elements;

• id – The identifier of the test execution instance (test instance id) that this report is related.
• date – Date and time that the test case is executed
• result – the result of the test execution, can take values from the <tr:TestResultType> enumeration

(SUCCESS, FAILURE, UNDEFINED). SUCCESS indicates that case is successfully executed and
FAILURE indicates that there are some errors (non-conformant parts). UNDEFINED represents
other situations where test case is not executed completely or existence of some errors (internal
system errors) not related with conformity or testing process.

• counters (0..1):<tr:ValidationCounters> – Provides the number of assertions, errors and warnings
based on the tests done within the test case.

• reports (0..*): <tr:TestStepReport> – The list of test step reports for each step executed within the
test case execution.

The <tr:TestStepReport> is the base class for representing any test step report.

• id – Identifier of the test step that this report is related
• date – Date and time that this test step is executed.
• result - The result of the test execution, can take values from the <tr:TestResultType> enumeration

(SUCCESS, FAILURE, UNDEFINED). SUCCESS indicates that step is successfully executed and
FAILURE indicates that there are some errors (non-conformant parts) related with the step.

CWA XXXXX:XXXX

47

UNDEFINED represents other situations where step is not executed completely or existence of
some errors (internal system errors) not related with conformity or testing process.

The <tr:DR> element (DecisionOrLoopReport) represents reports for decision steps and loop steps that
changes the execution flow based on some condition.

• decision – Provides the resulting Boolean value for the condition. This value indicates how test flow
will continue in the next steps.

The <tr:SR> (SimpleTestStepReport) represents the reports for all other step types (<tpl:ExitStep>,
<tpl:UserInteractionStep>, and <tpl:FlowStep>). It is basicly the implementation of the abstract
<tpl:TestStepReport> class.

The<tr:TAR> (TestAssertionReport) is used to represent reports for messaging and verification steps.

• name – Descriptive name for the test assertion group (ex: XML Schema Validation, Business Rule
Validations, etc).

• overview (0..1): <tr:ValidationOverview> – Provides information about the validation tool/service
used for the validation process and target specification for conformance checks.

• counters (0..1): <tr:ValidationCounters> – Provides the number of assertions, errors and warnings
based on the tests done within this assertion group

• context (0..1): <gitb:AnyContent> – For verification steps, this element provides the content that
validation is done on. For example, the XML message where schematron validation is performed.
For messaging steps, similarly it provides the related part of the message.

• reports (0..*): <tr:TestAssertionGroupReport> – Different testbed infrasturctures, validation
procedures may have different methodology to group validations/assertions. A validation step may
correspond to a simple assertion (ex: XPath expression validation) or a set of validation procedures
to perform a complete conformance test of a message content (ex: XML schema validation +
Schematron Validation). In order to provide the flexibility to testbeds for the grouping of assertions,
TestAssertionGroup element is designed to include further groups recursively.

The <tr:TestAssertionGroupReport> is used to represent the reports for a set of test assertions or test
assertion groups recursively. The element either includes assertion group reports recursively (reports
element) or reports for each assertion (info,warning or error elements) in the group

• reports (1..*) : <tr:TAR> – If the reports are organized into a further grouping, each of these
elements provides the reports for child groups.

• [info] OR [warning] OR [error]:<tr:TestAssertionReport> – Represents the leaf reports for the
smallest unit of validation process (ex: report from a schematron assertion).
<tr:TestAssertionReport> is an abstract class and one of the realizations; Info, Error,Warning
elements will be used for reports. <tr:Info> represents the assertions that are successful.
<tr:Error>represents the assertions with erroneous result and <tr:Warning>represents the
successful results but with some warnings. <tr: TestAssertionReport > abstract class provides a
wrapper for different report formats. Testbeds can extend it to define their own report formats for
different validation procedures. One implementation of it, the <tr:BAR> is given in this section to be
an example assertion report format for basic validation procedures.

The <tr:ValidationOverview>provides some further information regarding the validation procedure and the
target specification.

• profileId (0..1) – An identifier for the target specification that the validation step is related with. SDOs
generally assigns identifiers to their specifications or part of the specifications (scenarios, use
cases), and these can be used for this attribute.

• customizationId (0..1) – If the target specification is customized to a specific region/country or some
specific purpose, an identifier for this customization can be given for this attribute.

• transactionId (0..1) – An identifier for the transaction/mesage or document type that the validation is
performed on.

• validationServiceName (0..1) – Name of the validation service or tool that performs the validation

CWA XXXXX:XXXX

48

• validationServiceVersion (0..1) – Version of the validation service or tool that performs the
validation

• note (0..1) – Any textual note regarding the validation

The <tr:ValidationCounters>is the container for the validation statistics.

• nrOfAssertions (0..1) – Total number of assertions evaluated in this assertion group
• nrOfErrors (0..1) –Total number of errors from those assertions within the assertion group
• nrOfWarnings (0..1) – Total number of warnings from those assertions within the assertion group

The <tr:BAR> (BasicAssertionReport) provides a default <tr:TestAssertionReport> realization that can be
used for many of the existing validation methodologies.

• assertionId (0..1) – Optional attribute to give an identifier to the assertion. It can be used to vind the
assertion to a constraint, rule, or similar concepts defined within the specification.

• description - Textual description for the assertion result.
• location (0..1) – The expression that indicates the location of the error or warning within the content.

For example, an XPATH expression can be used for Schematron reports to indicate the error
location.

• test (0..1) This attribute gives the expression itself that performs the validation if it is possible to give
such an expression.

• type (0..1) – This attribute describes the type of assertion (ex: cardinality check, usage control) if
testbed provides such categorization

• value (0..1) – Some assertions checks the value of an element or attribute within a
message/document content (ex: check if it is equal to some value, or in some specific format). This
attribute gives the actual value within the content to enable the user to understand the assertion
semantics and error better.

7.1.1 XML Schema for Test Reporting Format

 <?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.gitb.com/tr/v1/"
 xmlns="http://www.gitb.com/tr/v1/"
 xmlns:gitb="http://www.gitb.com/core/v1/"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xsd:import namespace="http://www.gitb.com/core/v1/" schemaLocation="gitb_core.xsd"/>

 <!-- Root elements for TestCaseReport and TestStepReport-->
 <xsd:element name="TestCaseReport" type="TestCaseReportType"/>
 <xsd:element name="TestStepReport" type="TestStepReportType"/>
 <!-- Represents the Testcase Report-->
 <xsd:complexType name="TestCaseReportType">
 <xsd:complexContent>
 <xsd:extension base="TestStepReportType">
 <xsd:sequence>
 <xsd:element name="counters" type="ValidationCounters" minOccurs="0"/>
 <xsd:element name="reports" type="TestStepReportType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- Abstract type for Test Step Report-->
 <xsd:complexType name="TestStepReportType" abstract="true">
 <xsd:sequence>
 <xsd:element name="date" type="xsd:dateTime"/>
 <xsd:element name="result" type="TestResultType"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <!--Report format for Decision and Loop steps-->
 <xsd:complexType name="DR">
 <xsd:complexContent>
 <xsd:extension base="TestStepReportType">
 <xsd:sequence>
 <xsd:element name="decision" type="xsd:boolean"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- Report format for simple steps (exit, interact, flow)-->
 <xsd:complexType name="SR">
 <xsd:complexContent>

CWA XXXXX:XXXX

49

 <xsd:extension base="TestStepReportType"/>
 </xsd:complexContent>
 </xsd:complexType>
 <!--Report format for Messaging and Validation Steps-->
 <xsd:complexType name="TAR">
 <xsd:complexContent>
 <xsd:extension base="TestStepReportType">
 <xsd:sequence>
 <xsd:element name="overview" type="ValidationOverview" minOccurs="0"/>
 <xsd:element name="counters" type="ValidationCounters" minOccurs="0"/>
 <xsd:element name="context" type="gitb:AnyContent" minOccurs="0"/>
 <xsd:element name="reports" type="TestAssertionGroupReportsType" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- The Overview of Validation procedure-->
 <xsd:complexType name="ValidationOverview">
 <xsd:sequence>
 <xsd:element name="profileID" type="xsd:string" minOccurs="0"/>
 <xsd:element name="customizationID" type="xsd:string" minOccurs="0"/>
 <xsd:element name="transactionID" type="xsd:string" minOccurs="0"/>
 <xsd:element name="validationServiceName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="validationServiceVersion" type="xsd:string" minOccurs="0"/>
 <xsd:element name="note" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- Statistics of the Validation -->
 <xsd:complexType name="ValidationCounters">
 <xsd:sequence>
 <xsd:element name="nrOfAssertions" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="nrOfErrors" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="nrOfWarnings" type="xsd:integer" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--Supplementary class to include either AssertionReports or AssertionGroups -->
 <xsd:complexType name="TestAssertionGroupReportsType">
 <xsd:choice>
 <xsd:element name="reports" type="TAR" maxOccurs="unbounded"/>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="info" type="TestAssertionReportType"/>
 <xsd:element name="warning" type="TestAssertionReportType"/>
 <xsd:element name="error" type="TestAssertionReportType"/>
 </xsd:choice>
 </xsd:choice>
 </xsd:complexType>
 <!-- Abstract Test Assertion Report class -->
 <xsd:complexType name="TestAssertionReportType" abstract="true"/>
 <!-- Base assertion report format for GITB-->
 <xsd:complexType name="BAR">
 <xsd:complexContent>
 <xsd:extension base="TestAssertionReportType">
 <xsd:all>
 <xsd:element name="assertionID" type="xsd:string" minOccurs="0"/>
 <xsd:element name="description" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string" minOccurs="0"/>
 <xsd:element name="test" type="xsd:string" minOccurs="0"/>
 <xsd:element name="type" type="xsd:string" minOccurs="0"/>
 <xsd:element name="value" type="xsd:string" minOccurs="0"/>
 </xsd:all>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- Enumeration for representing the test result-->
 <xsd:simpleType name="TestResultType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SUCCESS"/>
 <xsd:enumeration value="FAILURE"/>
 <xsd:enumeration value="UNDEFINED"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

CWA XXXXX:XXXX

50

8 GITB Test Service Specifications

The aim of the GITB Test Service specifications is to provide common service specifications for the existing
conformance and interoperability testing facilities so that they can be used remotely by others, either from
within the same domain or from a different domain, for their own testing requirements. Based on the GITB
Testing Framework, three main services are identified as modular services that can be used between
different testing setups when executing conformance and interoperability tests. In this section, we will
describe these services by providing abstract service specification and Web Service binding (WSDL
description) for each of the services:

• Content Validation Service
• Messaging (Simulation) Service
• TestBed Service

8.1 Content Validation Service

8.1.1 Service Overview

Figure 8-1 illustrates the remote content validation scenario between the ValidationService and
ValidationClient actors. The content validation tools that want to implement the Content Validation Service
interface should play the ValidationService role in the scenario. The ValidationClient role can be played
by i) testbeds that wants to use the remote testing capability for specific content validations, and ii) any other
systems or organizations (vendors, etc) that want to use the system for their internal testing procedures.

1. vs:getModuleDefinition: The first step in the interaction is to retrieve the definition of the validation
module. Module definition provides the details regarding the validation operations that module
supports and inputs that the module takes if validation operation is supported.

2. vs:validate: This is the actual validation operation. ValidationClient should prepare the inputs based
on the module definition and supply them properly. Any content validation tool can be wrapped as
Content Validation Service with this operation. All the validation operations returns the test report
(the <tr:TAR> in the TPL) providing the overall result and description of performed assertions, found
errors and warnings.

Figure 8-1: Sequence Diagram for Content Validation Service

8.1.2 Abstract Service Description

8.1.2.1 ValidationClient Requests Module Definition

The <vs:GetModuleDefinitionRequest> does not take any parameter and is used to request the service's
description object. In response, namely <vs:GetModuleDefinitionResponse>, the service should return the
<gitb:ValidationModule> for which the model is described below;

• id – A unique identifier for the validation service itself (can be used by client sides to distinguish
different validation services).

• uri – The URL of the service endpoint

CWA XXXXX:XXXX

51

• operation(0..1)– Operation supported by the service. Should take value form enumeration (VC:
validateByContentType, VS: validateBySchema, V:validate). The default is “V”.

• metadata: <gitb:Metadata> – Metadata regarding the service (name, description, authors, version,
etc).

• config (0..*): <gitb:Parameter> - Configuration parameters for the module to change the behavior
in the validation process

• input (0..*): <gitb:TypedParameter> - Describes the input parameters for the validation operation if
it is supported.

8.1.2.2 Validation

The ValidationClient should send <vs:ValidateRequest> message to the service with the following details;
• sessionId - An identifier for the session between the client and the service.
• config(0..*): <gitb:Configuration> - Supplied configuration parameter values for the validation

process.
• input(1..*): <gitb:AnyContent> – The supplied input parameters for the validation. The parameters

should be in the same order with the parameters as defined in the module definition and should be
matched for the type and encoding.

The <vs:ValidationResponse> should be returned.

8.1.3 Web Service Description (WSDL)

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- edited with XMLSpy v2008 sp1 (http://www.altova.com) by SRDC (EMBRACE) -->
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://www.gitb.com/vs/v1/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" name="ValidationService"
targetNamespace="http://www.gitb.com/vs/v1/">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://www.gitb.com/vs/v1/" schemaLocation="gitb_vs.xsd"/>
 </xsd:schema>
 </types>
 <message name="getModuleDefinition">
 <part name="parameters" element="tns:GetModuleDefinitionRequest"/>
 </message>
 <message name="getModuleDefinitionResponse">
 <part name="parameters" element="tns:GetModuleDefinitionResponse"/>
 </message>
 <message name="validate">
 <part name="parameters" element="tns:ValidateRequest"/>
 </message>
 <message name="validateResponse">
 <part name="parameters" element="tns:ValidationResponse"/>
 </message>
 <portType name="ValidationService">
 <operation name="getModuleDefinition">
 <input message="tns:getModuleDefinition"/>
 <output message="tns:getModuleDefinitionResponse"/>
 </operation>
 <operation name="validate">
 <input message="tns:validate"/>
 <output message="tns:validateResponse"/>
 </operation>
 </portType>
 <binding name="ValidationServicePortBinding" type="tns:ValidationService">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getModuleDefinition">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="validate">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="ValidationService">
 <port name="ValidationServicePort" binding="tns:ValidationServicePortBinding">
 <soap:address location="/service/ValidationService"/>

CWA XXXXX:XXXX

52

 </port>
 </service>
 <!-- to generate sources in given package -->
 <jaxws:bindings xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:package name="com.gitb.vs">
 </jaxws:package>
 </jaxws:bindings>
</definitions>

8.1.4 XML Schema for Request/Response Messages

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xsd:schema version="1.0" targetNamespace="http://www.gitb.com/vs/v1/"
 xmlns="http://www.gitb.com/vs/v1/"
 xmlns:tns="http://www.gitb.com/vs/v1/"
 xmlns:tr="http://www.gitb.com/tr/v1/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:gitb="http://www.gitb.com/core/v1/">

 <xsd:import namespace="http://www.gitb.com/tr/v1/" schemaLocation="gitb_tr.xsd"/>
 <xsd:import namespace="http://www.gitb.com/core/v1/" schemaLocation="gitb_core.xsd"/>

 <xsd:element name="GetModuleDefinitionRequest" type="tns:Void" />
 <xsd:element name="GetModuleDefinitionResponse" type="tns:GetModuleDefinitionResponse" />
 <xsd:element name="ValidateRequest" type="tns:ValidateRequest" />
 <xsd:element name="ValidationResponse" type="tns:ValidationResponse" />

 <xsd:complexType name="Void">
 <xsd:sequence/>
 </xsd:complexType>

 <xsd:complexType name="GetModuleDefinitionResponse">
 <xsd:sequence>
 <xsd:element name="module" type="gitb:ValidationModule" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ValidateRequest">
 <xsd:sequence>
 <xsd:element name="sessionId" type="xsd:string" />
 <xsd:element name="config" type="gitb:Configuration" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="input" type="gitb:AnyContent" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ValidationResponse">
 <xsd:sequence>
 <xsd:element name="report" type="tr:TAR" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

8.2 Messaging (Simulation) Service

8.2.1 Service Overview

Figure 8-28-2 illustrates a scenario where a client (a testbed) drives a Messaging Service to handle the
message communication in a test scenario for a specific communication protocol.

1. ms:getModuleDefinition: Client can use this operation to get the module definition, which is in fact
the definition of the details related with inputs and outputs of the actual messaging commands.

2. ms:initiate: Before starting the use the messaging service for messaging simulations, a session
should be established between the client and the service to prepare the service for the operations.
The client provides the required configurations (ex: network configurations) of the SUTs that will
communicate with the simulator. The service should perform all the initializations and preparations
for the messaging operations in this phase. In response, a session id and the related configurations
of the simulator (ex: network configurations, etc) should be returned.

3. ms:beginTransaction: Different domains requires different communication protocols which differs
in message exchanging patterns. Most of the protocols (ex: Web Service communication) are
based on request-response pattern over a single network connection. However, there are more
complex patterns (ex: DICOM Communication) that requires multiple message exchanges, even
not in pairs of request-response, over a single network connection. In order to be generic while
handling the connections and message exchanges, separate commands are designed to notify the
service accordingly. This command notifies the service that a new communication will start with a
SUT within the next messaging command and makes the service to be ready for this.

CWA XXXXX:XXXX

53

Figure 8-2: Messaging Service Scenario

Scenario I: We will describe the messaging commands by different scenarios to describe the expected
behaviours better. In the first scenario, assume that according to our test case we need to send a message
to the SUT and then it will return a response to it.

4. ms:send: The “send” command is used to drive the service to send a message to a SUT.
Necessary configurations and message contents should be supplied within the command as
described in the module definition. The service should prepare the whole message and send it to
the SUT. When message is sent, the client will be notified. According to our assumption regarding
the protocol, SUT immediately returns the response. The Messaging Service is expected to notify
the client with this reponse and its validation report.

5. ms:endTransaction: This commands notify the service that this transaction is completed. The
service can release the resources (connections, etc) related with the transaction.

6. ms:finalize: Finalize the session between messaging service and the client.
Scenario II: This time the SUT is expected to initiate the communication by sending a message to our
simulator service.

7. ms:NotifyForMessage: The service should be ready to receive the message from the SUT any
time after beginTransaction command. When the message is received, service notifies the client
with the received message and its report. The client then use the “send” command to send the
response to this message. The service sends the given message to the SUT and returns the report.
GITB Messaging Service does not differentiate between acknowledgements and application level
responses. It is the responsibility of test designers and module implementers to design the service
and arrange the commands according to the scenario and setup. For example, using a reference
implementation or messaging software as a Messaging Service can automatically return
acknowldgements. In that case, test designer does not need to put another send command for the
acknowledgement.

CWA XXXXX:XXXX

54

8.2.2 Abstract Service Description

8.2.2.1 Requesting Module Definition (GetModuleDefinition)

The client use this operation to retrieve the module definition from the service to understand the input and
output parameters for messaging commands. The <ms:GetModuleDefinitionRequest> does not take any
parameter and is used to request the service's description object. In response, namely
<ms:GetModuleDefinitionResponse>, the service should return the <gitb:MessagingModule> element.

8.2.2.2 Initiating the Session (Initiate)

The client uses this operation to establish a session with MessaginService and provides the configuration
parameters of the SUTs that will involve in messaging. The details of the <ms:InitiateRequest>are as
follows;

• actorConfiguration (1..*): <gitb:ActorConfiguration> – Configurations for each SUT that will
communicate with this simulator in the process
◦ name – An identifier for the actor that the configurations are supplied for.
◦ config (1..*): <gitb:Configuration> – List of configurations for the given system (playing the

given actor)
In response, the service should return the <ms:InitiateResponse>;

• sessionId – An unique identifier for the session.
• actorConfiguration (1..*): <gitb: ActorConfiguration> – List of configurations for the simulator.

8.2.2.3 Initiating a Transaction (BeginTransaction)

This command is used to notify the service that communication is expected between the SUT and itself after
this point of time. The details of <ms:BeginTransactionRequest> are as follows;

• sessionId – The session identifier related with this transaction
• config (0..*): <gitb:Configuration> - Further configurations related with the transaction
• from (0..1) – The name of the actor (refers the name of the actor given in the

<gitb:ActorConfiguration> in Initiate operation) that will initiate the transaction
• to (0..1) – The name of the actor that will be on the other side

8.2.2.4 Commanding Messaging Service to Send a Message (Send)

This command is used to make the service to send the given message to a SUT. The details of
<ms:SendRequest> are as follows;

• sessionId - The session identifier related with this operation
• to - The name of the actor that the message will be send
• input (1..*): <gitb:AnyContent> – The inputs (message parts) supplied to the service. The service

will use this inputs to construct the actual message.
In response the SendResponse should be returned;

• report: <tr:AssertionGroupReport> – The validation report generated for the operation.

8.2.2.5 Notification of the Client for Received or Proxied Messages (NotifyForMessage callback)

When the service received a message from the SUT as expected according to the scenario, it should use the
callback and send the <ms:NotifyForMessageRequest>to the client;

• sessionId – The session identifier related with the message
• from (0..1) – The name of the actor that message is received from
• to (0..1) – The name of the actor that message is sent to (only used for Listen/proxy operations)

CWA XXXXX:XXXX

55

• report: <tr:AssertionGroupReport> – The received message parts and validation report generated
for the operation.

8.2.2.6 Closing the Transaction (EndTransaction)

When the communication between two actors is completed according to the scenario, the client can use this
operation to notify the service about this so that it can release the related resources. The
<ms:EndTransactionRequest> is as follows;

• sessionId - The session identifier related with this transaction

8.2.2.7 Closing the Session (Finalize)

When the messaging is finished, this command can be used to finalize the session. The
<ms:FinalizeRequest> is used in this operation;

• sessionId - The session identifier

8.2.3 Web Service Description (WSDL) for Messaging Service (Service Provider)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://www.gitb.com/ms/v1/"
 name="MessagingService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.gitb.com/ms/v1/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://www.gitb.com/ms/v1/" schemaLocation="gitb_ms.xsd" />
 </xsd:schema>
 </types>
 <message name="getModuleDefinition">
 <part name="parameters" element="tns:GetModuleDefinitionRequest" />
 </message>
 <message name="getModuleDefinitionResponse">
 <part name="parameters" element="tns:GetModuleDefinitionResponse" />
 </message>
 <message name="initiate">
 <part name="parameters" element="tns:InitiateRequest" />
 </message>
 <message name="initiateResponse">
 <part name="parameters" element="tns:InitiateResponse" />
 </message>
 <message name="beginTransaction">
 <part name="parameters" element="tns:BeginTransactionRequest" />
 </message>
 <message name="beginTransactionResponse">
 <part name="parameters" element="tns:BeginTransactionResponse" />
 </message>
 <message name="send">
 <part name="parameters" element="tns:SendRequest" />
 </message>
 <message name="sendResponse">
 <part name="parameters" element="tns:SendResponse" />
 </message>
 <message name="endTransaction">
 <part name="parameters" element="tns:EndTransactionRequest" />
 </message>
 <message name="endTransactionResponse">
 <part name="parameters" element="tns:EndTransactionResponse" />
 </message>
 <message name="finalize">
 <part name="parameters" element="tns:FinalizeRequest" />
 </message>
 <message name="finalizeResponse">
 <part name="parameters" element="tns:FinalizeResponse" />
 </message>
 <portType name="MessagingService">
 <operation name="getModuleDefinition">
 <input
 wsam:Action="http://gitb.com/MessagingService/getModuleDefinition"
 message="tns:getModuleDefinition" />
 <output
 wsam:Action="http://gitb.com/MessagingService/getModuleDefinitionResponse"
 message="tns:getModuleDefinitionResponse" />
 </operation>
 <operation name="initiate">
 <input
 wsam:Action="http://gitb.com/MessagingService/initiate"
 message="tns:initiate" />
 <output
 wsam:Action="http://gitb.com/MessagingService/initiateResponse"

CWA XXXXX:XXXX

56

 message="tns:initiateResponse" />
 </operation>
 <operation name="send">
 <input
 wsam:Action="http://gitb.com/MessagingService/send"
 message="tns:send" />
 <output
 wsam:Action="http://gitb.com/MessagingService/sendResponse"
 message="tns:sendResponse" />
 </operation>
 <operation name="beginTransaction">
 <input
 wsam:Action="http://gitb.com/MessagingService/beginTransaction"
 message="tns:beginTransaction" />
 <output
 wsam:Action="http://gitb.com/MessagingService/beginTransactionResponse"
 message="tns:beginTransactionResponse" />
 </operation>
 <operation name="endTransaction">
 <input
 wsam:Action="http://gitb.com/MessagingService/endTransaction"
 message="tns:endTransaction" />
 <output
 wsam:Action="http://gitb.com/MessagingService/endTransactionResponse"
 message="tns:endTransactionResponse" />
 </operation>
 <operation name="finalize">
 <input
 wsam:Action="http://gitb.com/MessagingService/finalize"
 message="tns:finalize" />
 <output
 wsam:Action="http://gitb.com/MessagingService/finalizeResponse"
 message="tns:finalizeResponse" />
 </operation>
 </portType>
 <binding name="MessagingServicePortBinding" type="tns:MessagingService">
 <wsaw:UsingAddressing required="true"/>
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document" />
 <operation name="getModuleDefinition">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="initiate">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="send">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="beginTransaction">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="endTransaction">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="finalize">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
 <service name="MessagingServiceService">
 <port name="MessagingServicePort" binding="tns:MessagingServicePortBinding">
 <soap:address location="REPLACE_WITH_ACTUAL_URL" />
 </port>
 </service>

CWA XXXXX:XXXX

57

 <!-- to generate sources in given package -->
 <jaxws:bindings xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:package name="com.gitb.ms">
 </jaxws:package>
 </jaxws:bindings>
</definitions>

8.2.4 Web Service Description (WSDL) for Messaging Service Client (Service Consumer)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://www.gitb.com/ms/v1/"
 name="MessagingServiceConsumer"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.gitb.com/ms/v1/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://www.gitb.com/ms/v1/" schemaLocation="gitb_ms.xsd" />
 </xsd:schema>
 </types>
 <message name="notifyForMessage">
 <part name="parameters" element="tns:NotifyForMessageRequest" />
 </message>
 <message name="notifyForMessageResponse">
 <part name="parameters" element="tns:NotifyForMessageResponse" />
 </message>
 <portType name="MessagingClient">
 <operation name="notifyForMessage">
 <input
 wsam:Action="http://gitb.com/MessagingClient/notifyForMessage"
 message="tns:notifyForMessage" />
 <output
 wsam:Action="http://gitb.com/MessagingClient/notifyForMessageResponse"
 message="tns:notifyForMessageResponse" />
 </operation>
 </portType>
 <binding name="MessagingClientPortBinding" type="tns:MessagingClient">
 <wsaw:UsingAddressing required="true"/>
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document" />
 <operation name="notifyForMessage">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
 <service name="MessagingClientService">
 <port name="MessagingClientPort" binding="tns:MessagingClientPortBinding">
 <soap:address location="REPLACE_WITH_ACTUAL_URL" />
 </port>
 </service>
 <!-- to generate sources in given package -->
 <jaxws:bindings xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:package name="com.gitb.ms">
 </jaxws:package>
 </jaxws:bindings>
</definitions>

8.2.5 XML Schema for Request/Response Messages

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xsd:schema version="1.0" targetNamespace="http://www.gitb.com/ms/v1/"
 xmlns="http://www.gitb.com/ms/v1/"
 xmlns:tns="http://www.gitb.com/ms/v1/"
 xmlns:tr="http://www.gitb.com/tr/v1/"
 xmlns:gitb="http://www.gitb.com/core/v1/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://www.gitb.com/tr/v1/" schemaLocation="gitb_tr.xsd"/>
 <xsd:import namespace="http://www.gitb.com/core/v1/" schemaLocation="gitb_core.xsd"/>

 <xsd:element name="GetModuleDefinitionRequest" type="tns:Void" />
 <xsd:element name="GetModuleDefinitionResponse" type="tns:GetModuleDefinitionResponse" />
 <xsd:element name="InitiateRequest" type="tns:InitiateRequest" />
 <xsd:element name="InitiateResponse" type="tns:InitiateResponse" />
 <xsd:element name="SendRequest" type="tns:SendRequest" />
 <xsd:element name="SendResponse" type="tns:SendResponse" />
 <xsd:element name="BeginTransactionRequest" type="tns:BeginTransactionRequest" />
 <xsd:element name="BeginTransactionResponse" type="tns:Void" />

CWA XXXXX:XXXX

58

 <xsd:element name="NotifyForMessageRequest" type="tns:NotifyForMessageRequest" />
 <xsd:element name="NotifyForMessageResponse" type="tns:Void" />
 <xsd:element name="EndTransactionRequest" type="tns:BasicRequest" />
 <xsd:element name="EndTransactionResponse" type="tns:Void" />
 <xsd:element name="FinalizeRequest" type="tns:FinalizeRequest" />
 <xsd:element name="FinalizeResponse" type="tns:Void" />

 <xsd:complexType name="Void">
 <xsd:sequence/>
 </xsd:complexType>

 <xsd:complexType name="GetModuleDefinitionResponse">
 <xsd:sequence>
 <xsd:element name="module" type="gitb:MessagingModule" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="InitiateRequest">
 <xsd:sequence>
 <xsd:element name="actorConfiguration" type="gitb:ActorConfiguration" minOccurs="1"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="InitiateResponse">
 <xsd:sequence>
 <xsd:element name="sessionId" type="xsd:string" />
 <xsd:element name="actorConfiguration" type="gitb:ActorConfiguration" minOccurs="1"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="BasicRequest">
 <xsd:sequence>
 <xsd:element name="sessionId" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="BeginTransactionRequest">
 <xsd:complexContent>
 <xsd:extension base="BasicRequest">
 <xsd:sequence>
 <xsd:element name="config" type="gitb:Configuration" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="from" type="xsd:string" minOccurs="0" />
 <xsd:element name="to" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="SendRequest">
 <xsd:complexContent>
 <xsd:extension base="BasicRequest">
 <xsd:sequence>
 <xsd:element name="to" type="xsd:string"/>
 <xsd:element name="input" type="gitb:AnyContent" maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="SendResponse">
 <xsd:sequence>
 <xsd:element name="report" type="tr:TAR" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="NotifyForMessageRequest">
 <xsd:complexContent>
 <xsd:extension base="BasicRequest">
 <xsd:sequence>
 <xsd:element name="from" type="xsd:string" minOccurs="0" />
 <xsd:element name="to" type="xsd:string" minOccurs="0" />
 <xsd:element name="report" type="tr:TAR" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="FinalizeRequest">
 <xsd:sequence>
 <xsd:element name="sessionId" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

CWA XXXXX:XXXX

59

8.3 Test Bed Service

8.3.1 Service Overview

Figure 8-3 illustrates a scenario where a client system uses the remote testbed to execute a test scenario
while it provides monitoring capability for its user (the SUT administrator). TestbedClient and TestbedService
role represents the client and service sides respectively.

1. tbs:getTestCaseDefinition: The scenario starts with user selecting the test case to execute, but it is
out of scope for the service specification. Then TestbedClient calls this operation to retrieve the test
case definition which will be presented in the TPL format as described in Section 0). TestbedClient
should render the description and present it to the user in some way.

2. tbs:getActorDefinition: In the test case definition, only the identifier and role of the actor in the test
scenario is returned. TestbedClient needs to know the required configuration parameters for actors
in order to get the configurations from the SUT administrators. This operation is used to retrieve
these actor definitions.

3. tbs:initiate: TestbedClient have to use the initiate operation by suppliying the test case identifier to
initiate the test execution. In response, the TestbedService should return an unique identifier for the
testcase execution session.

4. tbs:configure: After this phase, TestbedService is expecting TestbedClient to send the
configurations related with the SUT (or for all SUTs in case of interoperability tests). In response,
TestbedService also compiles the configurations for the simulated actors and returns them.
TestbedClient will show all these configurations to the user so that he can configure the SUT
accordingly (ex: providing network parameters of the corresponding actor).

5. tbs:initiatePreliminary: After configuration phase, if test case description has some preliminary
phase, TestbedClient should use the initiatePreliminary to start the preliminary phase. In response,
TestbedService returns all instructions and input requests for the user. TestbedClient will show these
instructions and requests to the user.

6. tbs:provideInput: When the user supply the requested information, TestbedClient use this
operation to send these inputs to the TestbedService.

7. tbs:start: When the preliminary phase end by collecting all the inputs, user can start the testing
phase at any time. When he does, TestbedClient use “start” command to initiate the execution. After
processing the test steps defined in the test case definition, TestbedService calls the
tbs:updateStatus callback to notify TestbedClient about the latest status of the execution. If an user
interaction step exists within the flow, the tbs:interactWithUsers callback will be called to initiate the
interaction. TestbedClient will use the tbs:provideInput operation to supply the inputs if the
interaction includes input requests. After completion of these, execution continues from the next
steps. When execution finished, the overall report for test case will be sent to the TestbedClient.

8. tbs:stop: This operations is not shown in the figure, but it can be used to stop the execution any
time.

9. tbs:restart: This is also not shown in the figure. When the execution is stopped (either finished
normally, stopped by user, or by exit step), this command can be used to restart the execution with
the same configurations and preliminary requirements.

CWA XXXXX:XXXX

60

Figure 8-3: Testbed Service Scenario

8.3.2 Abstract Service Description

8.3.2.1 Requesting Test Case Definition (GetTestcaseDefinition)

This operation is used by TestbedClient to retrieve the test case definition in TPL format. The
<tbs:GetTestcaseDefinitionRequest> is sent for the operation;

• tcId - The identifier for the test case

The <tbs:GetTestcaseDefinitionResponse> is returned in response;

• testcase: <tpl:TestCase> – Definition of test case

8.3.2.2 Initiating Test Process (Initiate)

This is operation is used to initiate the execution for a test scenario. TestbedService is expected to generate
an unique identifier for the execution. The <tbs:InitiateRequest>is sent for the operation;

• tcId - The identifier for the test case. Used if the execution is not initiated yet.
The <tbs:InitiateResponse>is returned as a response;

• tcInstanceId – The identifier for the execution session

CWA XXXXX:XXXX

61

8.3.2.3 Requesting Actor Definition (GetActorDefinition)

This operation is used to get the full definition of actors together with the required configuration parameters
for SUTs that wants to play the actor. The <tbs:GetActorDefinitionRequest>is sent for the operation;

• tcId – The identifier for the test case
• actorId – The identifier for the actor

The <tbs:GetActorDefinitionResponse>is returned as a response;

• actor: <gitb:Actor> – Definition of actor

8.3.2.4 Configure Test Execution (Configure)

This operation is used to supply the configurations of the SUTs that will participate to the testing process. As
each SUT will play an actor defined in the test case definition, configurations will be mapped with the actor
name. The <tbs:ConfigureRequest>element is used for request;

• tcInstanceId – The identifier for the execution session
• actorConfiguration (1..*): <gitb:ActorConfiguration> – Configurations for each SUT in the

process

The <tbs:ConfigureResponse>is returned as a response;

• actorConfiguration (1..*): <gitb:ActorConfiguration> – Configurations for the simulated actors

8.3.2.5 Initiate Preliminary Phase (InitiatePreliminary)

This operation is used to initiate preliminary phase when TestbedClient is ready after configurations are
done. TestbedService should execute the preliminary phase and return all the resulting instructions and input
requests. The <tbs:InitiatePreliminaryRequest>is sent for the operation;

• tcInstanceId – The identifier for the execution session

The <tbs:InitiatePreliminaryResponse>is returned as a response;

• preliminary: <tpl:Preliminary> – Instructions and input requests for the SUT administrators

8.3.2.6 Providing User Input for Execution (ProvideInput)

This operation is used both in preliminary phase or execution phase to supply the requested inputs from the
SUT administrators to the TestbedService. The response is just the acknowledgement of the operation. The
<tbs:ProvideInputRequest>is sent as the request;

• tcInstanceId - The identifier for the execution session
• input (1..*): <tbs:UserInput> - Inputs supplied by the users. Extends the <gitb:AnyContent>

• stepId - Associated step id for the request ()

8.3.2.7 Starting the Execution Phase (Start)

When preliminary phase is completed by providing all requested inputs, TestbedClient can start the
execution at any time. TestbedService starts to execute the test steps as defined in the test case description
and send status updates by calling the tbs:updateStatus callback. The reponse to this request is just an
acknowledgement. The <tbs:StartRequest>is send for the operation;

• tcInstanceId - The identifier for the execution session

CWA XXXXX:XXXX

62

8.3.2.8 Status Updates for Testcase Execution (UpdateStatus callback)

This is the callback to notify TestbedClient about the execution of each test step defined in the definition.
TestbedService should send a notification for each test step once when it starts to processing it and once
when it completed processing. For the completed steps, it also provides the report for the test step. The
<tbs:UpdateStatusRequest>is sent for the callback;

• tcInstanceId - The identifier for the execution session
• stepId – The identifier of the test step (the identifier of the corresponding step in the test case

definition)
• status – Status of the processing for that step. Values can be;
◦ “PROCESSING”: Used when the testbed starts processing the step.
◦ “SKIPPED”: Used when a step is skipped (One branch of decision step).

we“WAITING”: Used for messaging steps or interaction steps when some input is expected either from SUTs
or SUT administrators. (Replace PROCESSING for such steps)

◦ “COMPLETED”: Used when processing is completed for the step.
• report (0..1): <tr:TestStepReport> – When a step is completed, this element is used to provide the

report.

8.3.2.9 User Interaction During Execution (InteractWithUsers callback)

This is the callback to notify the TestbedClient that interaction is required with certain users (SUT
administrators) at this step to show them some instructions or request some input from them. As in the
InitiatePreliminaryResponse, TestbedService will supply all the instructions and input requests in this
callback. TestbedClient should interact with the given users, collect the input and call the ProvideInput
operation to supply the inputs to the TestbedService back. The <tbs:InteractWithUsersRequest> is used
for the callback;

• tcInstanceId - The identifier for the execution session
• interaction: <tpl:UserInteraction> – Include instructions and input requests regarding the expected

user interaction

8.3.2.10 Stopping the Execution (Stop)

This operation can be used at any time to stop the test execution. The <tbs:StopRequest> is used;
• tcInstanceId - The identifier for the execution session

8.3.2.11 Restarting the Execution Phase (Restart)

If the test execution is completed normally or stopped by some reason during the execution, this operation
can be used the restart the execution phase. In this way, the configuration and preliminary phases do not
have to be repeated. However, the TestbedService should initiate a new execution session. The
<tbs:RestartRequest> is used;

• tcInstanceId - The identifier for the execution session

The <tbs:RestartResponse> is returned as response;

• tcInstanceId - The identifier for the new execution session

8.3.3 Web Service Description (WSDL) for Testbed Service (Service Provider)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://www.gitb.com/tbs/v1/"
 name="TestbedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.gitb.com/tbs/v1/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl">

CWA XXXXX:XXXX

63

 <types>
 <xsd:schema>
 <xsd:import namespace="http://www.gitb.com/tbs/v1/" schemaLocation="gitb_tbs.xsd"/>
 </xsd:schema>
 </types>
 <message name="getTestCaseDefinitionRequest">
 <part name="parameters" element="tns:GetTestCaseDefinitionRequest"/>
 </message>
 <message name="getTestCaseDefinitionResponse">
 <part name="parameters" element="tns:GetTestCaseDefinitionResponse"/>
 </message>
 <message name="getActorDefinitionRequest">
 <part name="parameters" element="tns:GetActorDefinitionRequest"/>
 </message>
 <message name="getActorDefinitionResponse">
 <part name="parameters" element="tns:GetActorDefinitionResponse"/>
 </message>
 <message name="initiateRequest">
 <part name="parameters" element="tns:InitiateRequest"/>
 </message>
 <message name="initiateResponse">
 <part name="parameters" element="tns:InitiateResponse"/>
 </message>
 <message name="configureRequest">
 <part name="parameters" element="tns:ConfigureRequest"/>
 </message>
 <message name="configureResponse">
 <part name="parameters" element="tns:ConfigureResponse"/>
 </message>
 <message name="provideInputRequest">
 <part name="parameters" element="tns:ProvideInputRequest"/>
 </message>
 <message name="provideInputResponse">
 <part name="parameters" element="tns:Void"/>
 </message>
 <message name="initiatePreliminaryRequest">
 <part name="parameters" element="tns:InitiatePreliminaryRequest"/>
 </message>
 <message name="initiatePreliminaryResponse">
 <part name="parameters" element="tns:InitiatePreliminaryResponse"/>
 </message>
 <message name="startRequest">
 <part name="parameters" element="tns:StartRequest"/>
 </message>
 <message name="startResponse">
 <part name="parameters" element="tns:Void"/>
 </message>
 <message name="stopRequest">
 <part name="parameters" element="tns:StopRequest"/>
 </message>
 <message name="stopResponse">
 <part name="parameters" element="tns:Void"/>
 </message>
 <message name="restartRequest">
 <part name="parameters" element="tns:RestartRequest"/>
 </message>
 <message name="restartResponse">
 <part name="parameters" element="tns:Void"/>
 </message>
 <portType name="TestbedService">
 <operation name="getTestCaseDefinition">
 <input
 wsam:Action="http://gitb.com/tbs/getTestCaseDefinition"
 message="tns:getTestCaseDefinitionRequest"/>
 <output
 wsam:Action="http://gitb.com/tbs/getTestCaseDefinitionResponse"
 message="tns:getTestCaseDefinitionResponse"/>
 </operation>
 <operation name="getActorDefinition">
 <input
 wsam:Action="http://gitb.com/tbs/getActorDefinition"
 message="tns:getActorDefinitionRequest"/>
 <output
 wsam:Action="http://gitb.com/tbs/getActorDefinitionResponse"
 message="tns:getActorDefinitionResponse"/>
 </operation>
 <operation name="initiate">
 <input wsam:Action="http://gitb.com/tbs/initiate"
 message="tns:initiateRequest"/>
 <output wsam:Action="http://gitb.com/tbs/initiateResponse"
 message="tns:initiateResponse"/>
 </operation>
 <operation name="provideInput">
 <input wsam:Action="http://gitb.com/tbs/provideInput"
 message="tns:provideInputRequest"/>
 <output wsam:Action="http://gitb.com/tbs/provideInputResponse"
 message="tns:provideInputResponse"/>
 </operation>
 <operation name="configure">
 <input wsam:Action="http://gitb.com/tbs/configure"
 message="tns:configureRequest"/>
 <output wsam:Action="http://gitb.com/tbs/configureResponse"
 message="tns:configureResponse"/>
 </operation>
 <operation name="initiatePreliminary">
 <input wsam:Action="http://gitb.com/tbs/initiatePreliminary"
 message="tns:initiatePreliminaryRequest"/>
 <output wsam:Action="http://gitb.com/tbs/initiatePreliminaryResponse"
 message="tns:initiatePreliminaryResponse"/>

CWA XXXXX:XXXX

64

 </operation>
 <operation name="start">
 <input wsam:Action="http://gitb.com/tbs/start"
 message="tns:startRequest"/>
 <output wsam:Action="http://gitb.com/tbs/startResponse"
 message="tns:startResponse"/>
 </operation>
 <operation name="stop">
 <input wsam:Action="http://gitb.com/tbs/stop"
 message="tns:stopRequest"/>
 <output wsam:Action="http://gitb.com/tbs/stopResponse"
 message="tns:stopResponse"/>
 </operation>
 <operation name="restart">
 <input wsam:Action="http://gitb.com/tbs/restart"
 message="tns:restartRequest"/>
 <output wsam:Action="http://gitb.com/tbs/restartResponse"
 message="tns:restartResponse"/>
 </operation>
 </portType>
 <binding name="TestbedServicePortBinding" type="tns:TestbedService">
 <wsaw:UsingAddressing required="true"/>
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document"/>
 <operation name="getTestCaseDefinition">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="getActorDefinition">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="initiate">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="configure">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="provideInput">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="initiatePreliminary">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="start">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="stop">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="restart">
 <soap:operation soapAction=""/>
 <input>

CWA XXXXX:XXXX

65

 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="TestbedServiceService">
 <port name="TestbedServicePort" binding="tns:TestbedServicePortBinding">
 <soap:address location="/service/TestbedService"/>
 </port>
 </service>
 <!-- to generate sources in given package -->
 <jaxws:bindings xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:package name="com.gitb.tbs">
 </jaxws:package>
 </jaxws:bindings>

8.3.3.1.1.1.1.1.1 </definitions>

8.3.4 Web Service Description (WSDL) for Testbed Service Client (Service Consumer)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://www.gitb.com/tbs/v1/"
 name="TestbedServiceConsumer"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.gitb.com/tbs/v1/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://www.gitb.com/tbs/v1/" schemaLocation="gitb_tbs.xsd"/>
 </xsd:schema>
 </types>
 <!--request/responses for Callbacks-->
 <message name="updateStatusRequest">
 <part name="parameters" element="tns:UpdateStatusRequest"/>
 </message>
 <message name="updateStatusResponse">
 <part name="parameters" element="tns:Void"/>
 </message>
 <message name="interactWithUsersRequest">
 <part name="parameters" element="tns:InteractWithUsersRequest"/>
 </message>
 <message name="interactWithUsersResponse">
 <part name="parameters" element="tns:Void"/>
 </message>
 <portType name="TestbedClient">
 <operation name="updateStatus">
 <input
 wsam:Action="http://gitb.com/tbs/updateStatus"
 message="tns:updateStatusRequest"/>
 <output
 wsam:Action="http://gitb.com/tbs/updateStatusResponse"
 message="tns:updateStatusResponse"/>
 </operation>
 <operation name="interactWithUsers">
 <input
 wsam:Action="http://gitb.com/tbs/interactWithUsers"
 message="tns:interactWithUsersRequest"/>
 <output
 wsam:Action="http://gitb.com/tbs/interactWithUsersResponse"
 message="tns:interactWithUsersResponse"/>
 </operation>
 </portType>
 <binding name="TestbedClientPortBinding" type="tns:TestbedClient">
 <wsaw:UsingAddressing required="true"/>
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document"/>
 <operation name="updateStatus">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="interactWithUsers">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="TestbedClientService">
 <port name="TestbedClientPort" binding="tns:TestbedClientPortBinding">
 <soap:address location="/service/TestbedClient"/>
 </port>
 </service>
 <!-- to generate sources in given package -->

CWA XXXXX:XXXX

66

 <jaxws:bindings xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:package name="com.gitb.tbs">
 </jaxws:package>
 </jaxws:bindings>
</definitions>

8.3.5 XML Schema for Request/Response Messages

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xsd:schema version="1.0" targetNamespace="http://www.gitb.com/tbs/v1/"
 xmlns="http://www.gitb.com/tbs/v1/"
 xmlns:tns="http://www.gitb.com/tbs/v1/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tpl="http://www.gitb.com/tpl/v1/"
 xmlns:tr="http://www.gitb.com/tr/v1/"
 xmlns:gitb="http://www.gitb.com/core/v1/"
 elementFormDefault="qualified">

 <!-- Go up to top module folder first, than go down to schema folder through "target" -->
 <xsd:import namespace="http://www.gitb.com/tpl/v1/" schemaLocation="gitb_tpl.xsd"/>
 <xsd:import namespace="http://www.gitb.com/core/v1/" schemaLocation="gitb_core.xsd"/>
 <xsd:import namespace="http://www.gitb.com/tr/v1/" schemaLocation="gitb_tr.xsd"/>
 <xsd:import namespace="http://www.gitb.com/tdl/v1/" schemaLocation="gitb_tdl.xsd"/>

 <!-- TestbedService request/responses-->
 <xsd:element name="GetTestCaseDefinitionRequest" type="tns:BasicRequest"/>
 <xsd:element name="GetTestCaseDefinitionResponse" type="tns:GetTestCaseDefinitionResponse"/>
 <xsd:element name="GetActorDefinitionRequest" type="tns:GetActorDefinitionRequest"/>
 <xsd:element name="GetActorDefinitionResponse" type="tns:GetActorDefinitionResponse"/>
 <xsd:element name="InitiateRequest" type="tns:BasicRequest"/>
 <xsd:element name="InitiateResponse" type="tns:InitiateResponse"/>
 <xsd:element name="ConfigureRequest" type="tns:ConfigureRequest"/>
 <xsd:element name="ConfigureResponse" type="tns:ConfigureResponse"/>
 <xsd:element name="ProvideInputRequest" type="tns:ProvideInputRequest"/>
 <xsd:element name="InitiatePreliminaryRequest" type="tns:BasicCommand"/>
 <xsd:element name="InitiatePreliminaryResponse" type="tns:UserInteractionRequest"/>
 <xsd:element name="StartRequest" type="tns:BasicCommand"/>
 <xsd:element name="StopRequest" type="tns:BasicCommand"/>
 <xsd:element name="RestartRequest" type="tns:BasicCommand"/>
 <!--Callback request/responses-->
 <xsd:element name="UpdateStatusRequest" type="tns:TestStepStatus"/>
 <xsd:element name="InteractWithUsersRequest" type="tns:InteractWithUsersRequest"/>

 <xsd:element name="Void" type="tns:Void"/>

 <xsd:complexType name="BasicRequest">
 <xsd:sequence>
 <xsd:element name="tcId" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="BasicCommand">
 <xsd:sequence>
 <xsd:element name="tcInstanceId" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="GetTestCaseDefinitionResponse">
 <xsd:sequence>
 <xsd:element name="testcase" type="tpl:TestCase"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="GetActorDefinitionRequest">
 <xsd:complexContent>
 <xsd:extension base="BasicRequest">
 <xsd:sequence>
 <xsd:element name="actorId" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="GetActorDefinitionResponse">
 <xsd:sequence>
 <xsd:element name="actor" type="gitb:Actor"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="InitiateResponse">
 <xsd:sequence>
 <xsd:element name="tcInstanceId" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ConfigureRequest">
 <xsd:complexContent>
 <xsd:extension base="BasicCommand">
 <xsd:sequence>
 <xsd:element name="configs" type="gitb:ActorConfiguration" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

CWA XXXXX:XXXX

67

 <xsd:complexType name="ConfigureResponse">
 <xsd:sequence>
 <xsd:element name="configs" type="gitb:ActorConfiguration" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ProvideInputRequest">
 <xsd:complexContent>
 <xsd:extension base="BasicCommand">
 <xsd:sequence>
 <xsd:element name="stepId" type="xsd:string"/>
 <xsd:element name="input" type="UserInput" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="UserInput">
 <xsd:complexContent>
 <xsd:extension base="gitb:AnyContent">
 <xsd:attribute name="id" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="UserInteractionRequest">
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="instruction" type="Instruction"/>
 <xsd:element name="request" type="InputRequest"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="with" type="xsd:string" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="Instruction">
 <xsd:complexContent>
 <xsd:extension base="gitb:AnyContent">
 <xsd:attribute name="id" type="xsd:string"/>
 <xsd:attribute name="desc" type="xsd:string"/>
 <xsd:attribute name="with" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="InputRequest">
 <xsd:attribute name="id" type="xsd:string"/>
 <xsd:attribute name="desc" type="xsd:string"/>
 <xsd:attribute name="with" type="xsd:string"/>
 <xsd:attribute name="type" type="xsd:string" use="optional"/>
 <xsd:attribute name="encoding" type="xsd:string" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="TestStepStatus">
 <xsd:sequence>
 <xsd:element name="tcInstanceId" type="xsd:string"/>
 <xsd:element name="stepId" type="xsd:string"/>
 <xsd:element name="status" type="gitb:StepStatus"/>
 <xsd:element name="report" type="tr:TestStepReportType" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="InteractWithUsersRequest">
 <xsd:sequence>
 <xsd:element name="tcInstanceid" type="xsd:string"/>
 <xsd:element name="interaction" type="UserInteractionRequest"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Void">
 <xsd:sequence/>
 </xsd:complexType>

</xsd:schema>

CWA XXXXX:XXXX

68

9 GITB Test Description Language (TDL)

An important part of the GITB Architecture is the GITB Test Description Language (TDL) that defines the
high level executable scripting language for the Test Bed. Using the GITB TDL facilitates reusing of testing
capabilities among different stakeholders and domains.

9.1 GITB Test Bed Concepts and Interfaces

Before presenting the GITB Test Description Language (TDL), we need to describe the main concepts and
assumptions that it is based on to setup a global interoperability testbed.

9.1.1 Basic Concepts

The TDL defines the model and the format to describe a conformance or interoperability test scenario in a
way that, when executed, the Test Bed realizes the business process as defined in the target eBusiness
specification between the SUTs and the simulated actors and performs the intended testing procedures. The
definition of such a scenario with TDL is called Test Case definition. In order to check conformance or
interoperability of a system for a target specification, in general, multiple test scenarios may be needed to
test different aspects of the system in alternative scenarios. Therefore, a logical grouping among the Test
Case definitions is required. The concept of Test Suite represents such grouping for a specific objective of
the test designer. Furthermore, a Test Suite includes some common definitions for all included Test Cases.
With these definitions, the testing process can be defined as a business process between the testbed, SUTs,
and SUT administrators which is managed by the testbed itself by getting the Test Case definition and its
attached Test Suite definition as input.
The GITB testing process and model is based on the actor concept. All eBusiness specifications define
some type of actor (party) in their business choreography. These abstract definitions represent systems and
implementations in the real world and software implementers use these concepts to claim conformance to
the target specification. The actors that will participate in the testing process are defined in a Test Case
definition. Furthermore, their roles in the testing process are specified. The actors that are tested should be
indicated as SUT and actors that are simulated by the testbed should be indicated as simulated. Systems
claiming conformance to the corresponding actor, indicated as SUT in the test case definition, can initiate (or
join for interoperability test scenarios) the testing process by playing the role.

9.1.2 Type System and Expressions

Test Beds deal with messages, documents and intermediate results computed from them during test
execution. A requirement for all Test Beds is to have mechanisms to temporarily store the intermediate
results, pass them to other modules as input, navigate on the content to reach more granular values or parts,
and compute further results from those. Like any programming or scripting language, these are handled by
defining a type system and expression language working on that type system.
Although many of the current eBusiness specifications use XML as the format for the content, there are
some domains or specifications that have different data models and message or document formats (e.g.
DICOM for digital images in medical domain, JSON for many lightweight specifications and EDI). In order to
provide a generic testing platform and support all of them, we need an extendible type system for GITB.
Furthermore, it should not be complex to ease the test definition process.

CWA XXXXX:XXXX

69

Figure 9-1: GITB Type System
Figure 9-19-1 illustrates the GITB type system. The GITB Data Type represents the root abstract type where
all other types will be inherited. The Primitive Types represent simple values. The two Container Types are
used to hold multiple values. The List Type is used to represent a list of values in a specific GITB Data Type
(homogen internally). The Map Type is used to hold (key, value) pairs where value is any GITB Data Type
(not homogen within the map). The Object Type is the root type for complex structures. It is the extension
point for registering new types to the Test Bed for supporting different requirements within a specific domain
or specific to a standard. In GITB, the type system concept is rather abstract. For example, we can register a
type to represent EDI content (or XML, DICOM, etc.) in order to handle the related operations in our test
scenarios. A pluggable type handling mechanism is assumed for the GITB Test Bed where a new type
handler is plugged-in for a new registered type. In other words, a complex type is viewed as a black box
system (type handler) implementing the following operations defined in the abstract GITB Data Type class.

• deserialize – A type handler should have the capability to construct the instance of the target type
from a byte stream. Abstract type may have different serialization formats. For example, originally
DICOM has a non-XML binary data format used in the actual processes. However, a special XML
serialization and string serialization are defined by some tools for testing and monitoring purposes as
the original format is not human readable. In order to benefit from these formats in our testing
scenarios (for example, to supply a message template to a messaging step for sending messages to
SUTs), our type registered for DICOM can support these serialization formats. The parameter
encoding represents the format that the byte stream is encoded (in our example XML, original
DICOM encoding, or special string serialization). This operation is used to construct the instance
from a message received from SUT, or from a file (sample message to send).

• serialize – Similar to deserialization, a type handler should have the capability to serialize an
instance of the type to a byte stream in one of the supported serialization formats. The parameter
encoding indicates the format for serialization.

• processExpression – In addition to the type system, an expression language is required to
navigate on the content to reach granular content parts, elements, attributes, etc. As XML is the
most frequently used format for eBussiness specifications, an XPath 2.0 based expression language
is selected as default for GITB. Furthermore, many non-XML content specifications have already
XML serializations (DOM representations) and support XPath for their models. A type handler should
implement a mechanism to evaluate the given XPath expression on its data model. This mechanism
can just be applying XPath to the special XML serialization of the content.

9.1.3 Modularity for Specific Functionalities

As described in the GITB Testing Framework (CWA 16408:2012), the main testing functionalities like
messaging and validation can be handled by pluggable modules within a modular architecture. GITB
Messaging Service and GITB Validation Service are services that enables this modularity remotely between
different testing facilities. In order to handle this modularity within a single Test Bed architecture, the GITB
POC Test Bed is also designed to be modular in term of its messaging and validation capabilities. The
modules that will handle the communication with SUTs within the business process are called Messaging
Adapters (for example, an adapter to handle AS4 messaging). On the other side, the modules that will

CWA XXXXX:XXXX

70

perform specific validation procedures are called Validation Adapters (for example, adapter for schematron
validations). These modules can be internal pluggable modules only available within the Test Bed itself or
implemented as GITB Validation Service or GITB Messaging Service to open the functionality to outside
world as a reusable remote service.
While plugging these modules to the Test Bed, each module should provide a definition describing its
configuration, input and output parameters. The <gitb:TestModule> abstract class provides the details for
this definition:

• id – A unique identifier for the module itself within the Test Bed (Test Case definitions will use this
identifier to refer the module).

• uri – The path (address) used to access to the module. It will be a URL if the module is a service.
• metadata: <gitb:Metadata> – Metadata regarding the module (name, description, authors, version,

etc).
• inputs (0..*): <gitb:TypedParameter> – Describes the input parameters for the module.
• outputs (0..*): <gitb:TypedParameter> – Describes the outputs of the module (not used for

validation adapters).
• isRemote – Indicates if this module is a remote service, such as a GITB compliant Validation or

Messaging Service.

<gitb:ValidationModule> extends <gitb:TestModule> for validation adapters with the following elements:

• configs (0..*): <gitb:ConfigurationParameters> – Configuration parameters for the module to
change the behavior in the procedure (validation process or messaging process)

<gitb:MessagingModule> extends <gitb:TestModule> for messaging adapters with the following elements:

• actorConfigs: <gitb:ConfigurationParameters> – Generic configuration parameters for the
systems that will communicate.

• transactionConfigs: <gitb:ConfigurationParameters> – Configuration parameters specific to a
transaction.

• listenConfigs: <gitb:ConfigurationParameters> – Configuration parameters specific to listen
operations.

• receiveConfigs: <gitb:ConfigurationParameters> – Configuration parameters specific to receive
operations.

• sendConfigs: <gitb:ConfigurationParameters> – Configuration parameters specific to send
operations.

Test designers while writing the related part of the test scenario can use these definitions like an API to
supply the required configuration and input parameters to the module or bind the outputs to internal variables
within TDL. Furthermore, the Test Bed itself will use these definitions to behave accordingly while
communicating with these modules. Figure 9-9-22 illustrates the abstract model of the GITB TDL.

CWA XXXXX:XXXX

71

Figure 9-2: GITB Test Description Language Model

9.2 Test Suite Definition

The <tdl:TestSuite> element represents a package (logical grouping) of executable test scenarios to check
adherence of implementations to one or more normative statements in a specification. The methodology to
form these logical groups is not within the scope of TDL. Test designers may choose different strategies in
this respect. For example, a <tdl:TestSuite> may represent the package of all conformance test scenarios to
check conformance against a whole specification (for example, a conformance test suite for IHE XDS Profile,
conformance test suite for PEPPOL Busdox). Or, it may represent a package of conformance test scenarios
for a specific actor/party defined in a specification (for example, a conformance Test Suite for IHE XDS
Document Registry, or a conformance Test Suite for CENBII Tender Notification Customer Role). Or it may
correspond to a more granular set (such as a specific business scenario, etc).

The <tdl:TestSuite> definition provides some basic information required for the execution of child Test Case
definitions:

• metadata: <gitb:Metadata> – Metadata related to the Test Suite definition (name, description,
author, creation time, etc).

• actor (1..*) :<gitb:Actor> – Definition of actors that takes part in the business processes in the
target specification which are related to the test scenarios in this Test Suite.

• testcases (1..*): <tdl:TestcaseEntry> – List of Test Cases in this Test Suite.

The <tdl:TestcaseEntry> indicates the identifier of the Test Case and its prequisite Test Cases:

• id – The identifier for the test case
• prequisite (0..*) - Identifiers of prequisite test cases for this test case

9.3 Test Case Definition

The <tdl:Testcase> element represents an executable conformance or interoperability test scenario that
evaluates the adherence of implementations to one or more normative statements in a specification. The
following attributes make up the Test Case definition:

CWA XXXXX:XXXX

72

• id – Defines the unique identifier for the Test Case. It is recommended to use a URN for the value of
this attribute. (ex: urn:gitb:ihe:xds-document-source-conformace-test, urn:gitb:peppol:lime-protocol-
conformance-test)

• metadata: <gitb:Metadata> – Describes the metadata attributes (name, description, author,
version, etc) of the test case.

• namespace (0..*): <tdl:Namespace> – The list of namespace declarations and their prefix bindings
that will be used in the expressions used in the test case.

• import (0..*): <tdl:Import> – The list of import statements to declare the external test modules or
test artifacts required for the execution.

• actor (1..*) : <gitb:TestRole> – Describes the actors in the business process defined by the target
specification of the test scenario and the role assignments regarding the testing process. (ex:
Supplier in PEPPOL profiles, Document Consumer in IHE profiles)

• variable (0..*): <tdl:Variable> – The global variable definitions for the Test Case execution.
Variables are used to temporarily store message/document parts or specific values during the
execution.

• preliminary (0..1): <tdl:UserInteraction> – Container for describing preliminary requirements of the
Test Case that should be shown to the SUT administrators before starting the test execution.

• steps: <tdl:Sequence> – The root container for the definition of test steps and their flows.
• scriplet (0..*):<tld:Scriplet> – A subsequence of test steps, or in other words a sub test flow, which

can be used within the test case definition more than once. Similar to the concept of function
definition in a programming language.

9.3.1 Namespace Declarations

The GITB TDL has an abstract expression language concept for processing/selecting elements from
message/document contents, or compute further values from such content. Although, a default expression
format (XPath based) will be proposed in this document for the POC Testbed implementation, any
expression language designed for these purposes can be used as an TDL expression. Namespaces are
important in expressions while refering the element or attribute names in a document or message model.
This <tld:Namespace> element is used to declare the namespace and the prefix bounded to the
namespace within the execution scope. These prefixes can then be used in expressions to refer the
elements defined in the corresponding namespace.

• prefix – The prefix binding for the namespace.
• value – The string representing the namespace.

9.3.2 Importing External Test Modules and Artifacts

The GITB architecture allows a Test Bed to use remote testing facilities and existing Test Artifacts (for
example, schematrons, schemas, sample messages) within the test execution. The import statements
provide the details for the test engine. They describe how to import those modules or artifacts so that the test
engine can remotely access them and use them during the test execution.

The <tdl:TestModule> element is used to import external test modules. The following are the details of the
element:

• name – The name of the imported module. This name will be used to refer this module within the
test case definition.

• uri – The URI to access to the module.
• config (0..*): <gitb:Configuration> – Configuration parameters for the module. The test engine

should configure the module with the supplied parameters before the execution.

The <tdl:TestArtifact> element is used to import external test artifacts required for test execution. The
following are the details of the element:

CWA XXXXX:XXXX

73

• name – A name assigned to the artifact. This name will be used to refer this artifact within the test
case definition.

• uri – The URI to access to the artifact.
• type – Indicates the type of the content. Should refer one of the default GITB types or plugged-in

types for the testbed. (ex: gitb-types:DOM for schematron or XML schema artifacts)
• encoding (0..1) – Indicates the serialization format of the artifact content (ex: XML for schematron or

XML schema artifacts). If not supplied the default format for the given type is assumed to be used for
the artifact.

9.3.3 Defining the Actors and Roles in the Test Case

As mentioned earlier, the GITB testing process and model is based on the actor concept, which is very
common for eBusiness specifications. A Test Case definition should declare the actors who are participating
in the target testing scenario (The details of the actors are defined within the Test Suite definition).
Furthermore, based on the objective of the test scenario, the role of the actor in terms of testing should also
be declared. For a conformance test scenario, the actor for which the conformity will be checked should take
the System-Under-Test (SUT) role. The other actors will be simulated by the test engine. For an
interoperability test scenario, the actors that will be tested should be indicated as SUT. The <gitb:TestRole>
element is used to define an actor along with the following details:

• id – The unique identifier of the actor definition within the GITB Test Bed.
• name – A short name assigned to the actor. This name is used in the Test Case definition to refer

this actor in the related constructs.
• role – The role of the actor for testing process. The value should be from TestRoleEnumeration;
◦ SUT – Indicates that this actor will be tested in this test scenario. It means that the systems that

want to be tested can only participate to the test with this actor.
◦ SIMULATED – Indicates that this actor will be simulated by the Test Bed itself in the test

scenario.

9.3.4 Defining the Variables

Like any programming language, test scripting languages need variables to store intermediate results
(message/document parts, computed values, etc) during test execution. The <tdl:Variable> element defines
a variable with its type and initial value if supplied. In GITB TDL, variable declarations are either done in a
Test Case or in a Scriptlet and the scope of the variable is the enclosed container. The variables defined in
the Test Case are global variables for test execution. Variables in Scriptlets are local variables for that
scriptlet.

• name – Name of the variable. Should be unique within the scope (Test Case or Scriptlet). The
expressions refer this name to access the value (see expression handling).

• type – Indicates the type of the variable (see GITB TDL type system).
• value (0..*): <tdl:Binding> – Provides the initial value assigned to the variable before the

execution of test steps. The <tdl:Binding> element is a named expression and the evaluated value
of this expression is assigned for the value. For composite types (map and list), more than one
“value” element can be supplied. For “list” type, a list will be composed from the evaluated value of
all supplied “value” elements. For “map” type, each “value”element will provide the key (the name
attribute of <tdl:Binding> element), value (evaluated expression value) pair.

9.3.5 Preliminary Phase for the Execution

The <tdl:UserInteraction> construct is the container for the steps in the preliminary phase of the test
scenario, but also used for user interactions during execution. This is the phase where SUT administrators
are notified with preliminary requirements of the test scenario. These preliminary requirements can be
instructions for SUT admins to do something on their implementations related to the scenario before the
execution begins. This instruction will probably be related with a message/document exchanged between the
SUT and test engine (or another SUT). For example, it may request from SUT admin to create a user profile
in the system with the given values (id, name, address, etc) and check if the message part related with the

CWA XXXXX:XXXX

74

created user profile complies with the given requirements. This type of preliminary interactions are
represented by the <tdl:InstructionOrRequest> element and its attributes are as follows;

• desc – The textual instruction to be shown to the SUT administrator.
• with (0..1) – Refers the actor (name attribute of TestRole element) that this instruction will be shown.

If not supplied, it is assumed that this instruction is shown to all SUT actors defined in the test.
• type (0..1) – If a value (computed at run time) is supplied together with the instruction, the type of the

value should be specified in this attribute. An example instruction can be “Please use the following
value for the User identifier for the scenario”.

• encoding (0..1) – If a value is supplied together with the textual instruction, this attribute indicates
the representation format of the value for the given type.

• expr (0..1) – <tdl:InstructionOrRequest> extends <tdl:Expression> and the evaluated value of
expression will be supplied as the value to be shown in the instruction.

Sometimes rather than enforcing requirements (specific values in the scenario), it can be more convenient to
give the freedom to the SUT administrators to set certain values in a testing scenario. For the same example,
the instruction can be changed to “Please create a user profile in your system and copy the user identifier
that your system assigns to the user to the following space”. Such instructions are also represented with
<tdl:InstructionOrRequest> element. The semantics of the attributes are as follows:

• desc – The textual instruction to be shown to the SUT administrator.
• with – Refers the actor (name attribute of TestRole element) that this instruction will be shown and

input will be requested.
• expr (0..1) – <tdl:InstructionOrRequest> extends <tdl:Expression> and if an expression is supplied, it

means that input taken from the user will be assigned to the mentioned variable in the expression.
In other words, supplied expression should be a variable expression (left value). If this element
exists, type and name attributes are not necessary and test engine should not process them. The
type of the expected input is deducted from the type of the variable.

• type(0..1) – If the requested input is not assigned to a variable by using the expr, this attribute
should be used to indicate the type of the requested input according to type system of the testbed.

• name (0..1) – If the requested input is not assigned to a variable by using the expr, this attribute will
specify the name of the input unique within the container (Preliminary or UserInteraction). Then this
name will be used to access the value within the later expressions.

• encoding (0..1) – Indicates the serialization format of the requested input. If not supplied the default
format of the given type is assumed.

9.3.6 Test Steps and Commands

The <tdl:Sequence> is used to represent a sequence of test commands for the test engine to execute
sequentially. The root <tdl:Sequence> element in the <tdl:Testcase> definition is the entry point for the
main execution phase. A Sequence may include the following constructs;

• btxn: <tdl:BeginTransaction>
• etxn: <tdl:EndTransaction>
• send: <tdl:Send>
• receive: <tdl:Receive>
• listen: <tdl:Listen>
• if: <tdl:IfStep>
• while: <tdl:WhileStep>
• forEach: <tdl:ForEachStep>
• flow: <tdl:FlowStep>
• exit: <tdl:ExitStep>
• assign: <tdl:Assign>
• group: <tdl:Group>

CWA XXXXX:XXXX

75

• verify: <tdl:Verify>
• call: <tdl:CallStep>
• interact: <tdl:UserInteraction>

Some of these constructs (btxn, etxn, assign, call) are supplementary constructs and are not designated as
test steps. Others are actual test steps which are presented to the users and should extend <tdl:TestStep>
class. The common attributes for test steps are;

• desc – The textual description of the test step. It should be written as an instruction to the SUT
administrators when some action is expected.

9.3.7 Messaging Steps

Handling communication among SUTs and the simulated actors (i.e. the Test Bed itself) based on the target
protocol (according to the rules and requirements stated by the target specification) is one of the major part
for automated test processing. Communication can be between a SUT and a simulated actor, or between
two SUTs and the required TDL commands and mechanisms are required to handle and drive the
communication. The TDL has three messaging commands to represent these operations:

• send – This is used when the Test Bed (over a simulated actor) needs to send a message to a SUT
based on the target specification for that step.

• receive – This is used when a SUT is expected to send a message to the Test Bed (over a
simulated actor) for that step based on the target specification.

• listen – This is used when a SUT is expected to send a message to another SUT and the Test Bed
is expected to listen (like a proxy) to this message.

Each of these test steps represents only one side of the communication between actors. The communication
protocols (ex: SOAP Web Services, RESTFul Services, AS2, AS3, AS4, ebMS, etc) generally are based on
request-response scheme at the application layer. Therefore, in order to handle the full communication two
complimentary messaging steps should be used. For example, assume that we are testing a Web service
client and out Test Bed is simulating the Web service. For this communication, we need a receive command
as a first step to get the Web service request. Then after doing some validations and processing, we can use
the send command to send the response message. However, some domain specific protocols (ex: DICOM
communication protocol in eHealth) define more complex messaging schemes (multiple requests, responses
in specific orders) at the application layer. In order to support all of these protocols, TDL defines the
Transaction concept which is used to relate the messaging steps that simulate a complete communication
between two actors at the application layer. The <tdl:BeginTransaction> command is used to notify the test
engine that a Transaction will start with the given in in the next messaging steps. The details of the element
are as follows:

• txnId – An identifier assigned to the transaction. This identifier is used to relate the messaging
steps with this transaction. Therefore, it should be unique among other transactions in the test
case definition.

• from – The actor that will participate in the communication related to this transaction. The name
attribute of the actor stated in the corresponding TestRole element should be used for the value for
referral. As notation, the actor that will start the communication should be refered from attribute.
Generally, specifications define single endpoints for their actor definitions. However, some may
define more than one endpoint for an actor supporting different protocols. If an actor definition has
more than one endpoint definition, then the value for this attribute should be in the following format
“<actor-name>.<endpoint-name>”.

• to – The actor that will participate in the communication related with this transaction.

The <tdl:EndTransaction> class is used to notify test engine that a transaction is finalized and no following
messaging steps will refer this transaction any more.

• txnId – The id of the transaction.

A common base class, <tdl:MessagingStep> is designed for the three messaging steps.

• txnId – The id of the transaction that this messaging step belongs to.

CWA XXXXX:XXXX

76

• handler – The unique identifier for the handler (messaging module) within the Test Bed that will
handle the communication stated with this messaging step.

• from – The actor that will send the message. The name attribute of the actor stated in the
corresponding TestRole element should be used for the value for referral. If an actor definition has
more than one endpoint definition, then the value for this attribute should be in the following format
“<actor-name>.<endpoint-name>”.

• to – Refers the actor that will receive the message (see from - Same rules apply).
• config (0..*): <gitb:Configuration> – List of configuration parameters to configure the messaging

module for the communication.

In a GITB Test Bed, every registered messaging module has a definition file that defines its configuration, as
well as the input and output parameters required for the operation. Supply of the configuration parameters
and inputs and binding of the output parameters in the TDL are perfomed based on these definitions.

The <tdl:Send> command extends the <tdl:MessagingStep> with the following extra elements;

• input (0..*): <tdl:Binding> – The list of input elements that will be supplied to the messaging
module (most of the time inputs will be the parts of the message that will be send to the SUT). The
Binding class is an Expression with a name attribute. The expression is evaluated and the value is
given as the input parameter. The binding of the supplied input elements to the input parameters of
the module can be done in two different ways; either by name binding, or by the order of parameters.
By name binding, the name attribute in each input element should refer the parameter name defined
in module definition. In this way, the optional parameters may not be supplied. For the other way,
supplied input elements should be in the same order defined in the module definition and for optional
parameters; if the test designer does not want to supply the parameter he should use an empty input
element.

The <tdl:Receive> and <tdl:Listen> commands extends the <tdl:MessagingStep> with the following extra
elements:

• output (0..*): <tdl:Binding> – Messaging modules returns a set of outputs (message parts) as a
result of receive or listen operations. These elements are used to bind the outputs to some variables
in the Test Case definition. The binding of returned results to these elements can be done in two
ways either by name binding, or by the order of parameters as in the case of input elements in the
Send command. The expression given in the output element should be a variable expression. The
value given in the corresponding output is then assigned to this variable.

• id (0 .1) – TDL provides a syntactic sugar for test designers to use the results (received messages)
of Receive or Listen commands. Rather than binding the outputs to some variable, test designer can
use the id attribute for the command without using any output elements. In this way, a map type
variable will be created with this supplied id (name). The outputs of the step will be stored in this map
where the keys are the output names defined in the module definition.

9.3.8 Validation Step

The <tdl:Verify> is used to represent validation steps in the test scenario where a specific validation
methodology is applied on a given content.

• handler – The identifier (URN) for the validation module that will perform the actual validation.
• config (0..*): <gitb:Configuration> – The list of configuration parameters supplied to the validation

module for the validation process.
• input (1..*): <tdl:Binding> – The list of inputs (content, schemas, etc) supplied to the validation

module. For each input element the expression is evaluated and the value will be supplied as input
parameter for the module. The same methodology described in messaging steps is used to bind the
values to the parameters (binding by order and binding by names).

• id (0..1) – If test designer needs a decision step or loop step that depends on the result of a
validation step, the id attribute can be used to give a name to the validation result. In this case, a
Boolean variable named with the given id will be created and this variable can be accessed by
further expressions in other steps.

CWA XXXXX:XXXX

77

9.3.9 User Interaction During Execution

The <tdl:UserInteraction> is used for steps to interact with SUT administrators during test execution. The
Test Bed is expected to interact with users, show the child instructions and get the requested inputs for this
step. When the interaction is finalized, the step is assumed to be completed and execution continues with
the next step.

• with – Interaction can be with a specific SUT administrator for this step. In that case this attribute
should refer (TestRole.name) the corresponding actor. If this attribute is not supplied, the “with”
attribute should be supplied for each included Instruction or InputRequest element.

• instruction (0..*): <tdl:InstructionOrRequest> – The list of instructions for this interaction group.
The details of the Instruction element are described in preliminary phase section.

• request (0..*): <tdl:InstructionOrRequest> – The list of input requests for this interaction group.
The details of the Instruction element are described in preliminary phase section.

9.3.10 Interim Computations

Test designers may need some interim computations on the received content (messages, documents,
inputs) between test steps to use them in later steps. The <tdl:Assign> is the supplementary test construct
designed for this purpose. It extends Expression and the computation/processing performed with the
expression is stored to a variable as a result of the construct.

• to – A variable expression indicating the variable to store the resulting value.
• append (0..1) – This attribute is only used for the list type variables to indicate whether the value

calculated by the expression is a list type so a normal assignment is performed or it is not a
container type and the value is appended to the list as a result.

9.3.11 Test Flow Steps

Sometimes a test scenario can include decision points where execution continue with a specific branch
based on a decision. The <tdl:IfStep> is used to indicate such decision points.

• cond: <tdl:Expression> – A Boolean expression representing the condition for the decision point
• then (0..1): <tdl:Sequence> – The branch of steps that should be executed when the condition is

evaluated true.
• else (0..1): <tdl:Sequence> – The branch of steps that should be executed when the condition is

evaluated false.

Another construct required by any computational language is the loop construct to execute a part of the
script in a loop based on some condition. The <tdl:WhileStep> is one of them in TDL for generic loops.

• cond: <tdl:Expression> – A Boolean expression representing the condition that decides to continue
to the loop or not.

• do: <tdl:Sequence> – The sequence of steps to loop on.

The <tdl:RepeatUntilStep> is another loop construct which executes the child steps at least once and then
decides to loop over based on the given condition.

• do: <tdl:Sequence> – The sequence of steps to loop on.
• cond: <tdl:Expression> – A Boolean expression representing the condition that decides to continue

to the loop or not.

The <tdl:ForEachStep> is another loop construct for executing steps for a given number of times (iteration
over a list type variable).

• counter (0..1) – Name of the iteration variable (number type). The default value is “i” if not supplied.
The scope of the counter variable is the child steps given in the do sequence. It can be used as
index for iteration over lists. For each iteration, the value of the variable is incremented.

CWA XXXXX:XXXX

78

• start (0..1) – The starting value for the counter variable. The default value is 0.
• end – The end value for the counter variable. If the value of the counter variable becomes larger

than this value, the loop ends.

Some test scenarios need concurrent branches of steps that should be executed concurrently. The
<tdl:FlowStep>is used for this purpose.

• thread (1..*):<tdl:Sequence> – Each thread represents a branch that should be executed
concurrently.

The <tdl:ExitStep> is used to exit from the Test Case execution from any branch.

The <tdl:GroupStep>, extending Sequence class, is used to form a logical group of sequence of steps in
order to better present the test scenario to SUT administrators.

9.3.12 Modular Test Scripting

Like developers writing code in any programming language, test designers need to group a set of steps, a
sub execution flow, and reuse them in their Test Case descriptions more than once. The <tdl:Scriptlet> is
used to define such function–like partial test scripts. Scriptlets can be defined within a Test Case definition or
globally within the Test Suite packages. The following are the details of the element:

• id – The identifier used to identify the definition within the Test Case definition or a Test Suite
package

• metadata (0..1): <gitb:Metadata> – The metadata of this partial test script definition.
• namespace (0..*): <tdl:Namespace> – The list of namespace declarations and their prefix bindings

that will be used in the expressions used in the Scriptlet definition.
• import (0..*): <tdl:Import> – The list of import statements to declare the external test modules or

test artifacts required for the execution of this partial definition.
• param (0..*): <tdl:Variable> – The definition of input parameters of this Scriptlet (like function

parameters).
• var (0..*): <tdl:Variable> – Definition of local variables where the scope is this Scriptlet definition.
• steps: <tdl:Sequence> – The sequence of test steps for this partial test execution flow.
• output (0..*): <tdl:TypedBinding> – Definition of return values for this partial test script. The callee

can access these values from its internal scope when the execution of the scriptlet is finalized. The
TypeBinding extends Expression and the evaluated value of expression is returned as a result. As
an extension to the Binding class, TypeBinding indicates the type of the returned result with the
type attribute.

The <tdl:CallStep> is used to call a <tdl:Sciptlet> within a test case or another scriptlet definition.

• path – The identifier of the <tdl:Scriptlet> to call.
• input (0..*): <tdl:Binding> – Input parameters supplied to the scriptlet. Binding is performed similar

to bindings in other constructs.
• output (0..*): <tdl:Binding> – Defines the bindings of the Scriptlet outputs to some variable in the

context. Binding is performed similar to the bindings in other constructs.
• id (0..1) – Can be used to directly access the results of the scriptlet from a map type variable

initialized by this name. In that case, the test designer does not need to use the output elements.

9.3.13 Expressions and Bindings

The <tdl:Expression> element is used to represent TDL expressions and used in all other TDL constructs
as described in the above sections.

• lang (0..1) – Any expression language (both in terms of syntax and semantics) can be used as the
TDL expressions if the Test Bed supports it. This attribute provides the unique identifier (URN) for

CWA XXXXX:XXXX

79

the language for this expression. TDL provides a default XPath-based expression language and if
this attribute is not supplied this scheme should be assumed.

• source (0..1) – The input source for the expression. In other words the expression will be evaluated
based on this source content. Should be a variable expression (left value).

• expr (0..1) – The string representing the expression. If not supplied, the result is Null value.

The Default TDL Expression scheme extends the XPath 2.0 with the following simple extensions;

• The Variable References in the XPath expressions are extended to access the values of GITB
container typed (list and map) variables. The following rules apply:
◦ $<variable-name> is used as usual for the value of a variable (ex: $x to access to the x's value).
◦ $<variable-name>{<key-name>} is used to access an entry (with the given key) in a map typed

variable (ex: $x{name} to access the entry in the x with key “name”).
◦ $<variable-name>{<numeric-index>} is used to access an entry of the list type attribute at the

given index (ex: $x{0} access to the first element in the x list).

The same rules applied to the TDL Variable Expressions (reference to the variables) to refer the variables.

Some test constructs in TDL (messaging steps, interaction steps, validation steps, calling scriptlets) get
inputs and return outputs within the test execution. In order to bind values to these input and output
parameters, the <tdl:Binding> element is used. Binding extends Expression with the the following attribute:

• name (0..1) – Name of the input parameter that the evaluated expression value will be bind while
supplying input. Similarly, it can be the name of the output parameter that its return value will be bind
to the given variable reference. As described in the related constructs, if this attribute is not used, the
parameters will be bound in the same order.

9.4 XML Schema for TDL

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xsd:schema xmlns="http://www.gitb.com/tdl/v1/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:gitb="http://www.gitb.com/core/v1/" targetNamespace="http://www.gitb.com/tdl/v1/"
elementFormDefault="qualified" version="1.0">
 <xsd:import namespace="http://www.gitb.com/core/v1/" schemaLocation="gitb_core.xsd"/>
 <xsd:element name="testcase" type="TestCase"/>
 <xsd:element name="testsuite" type="TestSuite"/>
 <xsd:complexType name="TestSuite">
 <xsd:sequence>
 <xsd:element name="metadata" type="gitb:Metadata"/>
 <xsd:element name="actors" type="gitb:Actors"/>
 <xsd:element name="testcase" type="TestCaseEntry" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="TestCaseEntry">
 <xsd:sequence>
 <xsd:element name="prequisite" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="option" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="TestCase">
 <xsd:sequence>
 <xsd:element name="metadata" type="gitb:Metadata"/>
 <xsd:element name="namespaces" type="Namespaces" minOccurs="0"/>
 <xsd:element name="imports" type="Imports" minOccurs="0"/>
 <xsd:element name="preliminary" type="UserInteraction" minOccurs="0"/>
 <xsd:element name="variables" type="Variables" minOccurs="0"/>
 <xsd:element name="actors" type="gitb:Roles"/>
 <xsd:element name="steps" type="Sequence"/>
 <xsd:element name="scriptlets" type="Scriptlets" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="Namespaces">
 <xsd:sequence>
 <xsd:element name="ns" type="Namespace" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Namespace">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="prefix" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>

CWA XXXXX:XXXX

80

 </xsd:complexType>
 <xsd:complexType name="Imports">
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="artifact" type="TestArtifact"/>
 <xsd:element name="module" type="TestModule"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="TestArtifact">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:ID" use="required"/>
 <xsd:attribute name="type" type="xsd:string" use="required"/>
 <xsd:attribute name="encoding" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="TestModule">
 <xsd:sequence>
 <xsd:element name="config" type="gitb:Configuration" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="uri" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="Variables">
 <xsd:sequence>
 <xsd:element name="var" type="Variable" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Variable">
 <xsd:sequence>
 <xsd:element name="value" type="TypedBinding" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="type" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="Scriptlets">
 <xsd:sequence>
 <xsd:element name="scriptlet" type="Scriptlet" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Scriptlet">
 <xsd:sequence>
 <xsd:element name="metadata" type="gitb:Metadata" minOccurs="0"/>
 <xsd:element name="namespaces" type="Namespaces" minOccurs="0"/>
 <xsd:element name="imports" type="Imports" minOccurs="0"/>
 <xsd:element name="params" type="Variables" minOccurs="0"/>
 <xsd:element name="variables" type="Variables" minOccurs="0"/>
 <xsd:element name="steps" type="Sequence"/>
 <xsd:element name="output" type="Binding" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="Sequence">
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <!-- Messaging Test Steps Constructs -->
 <xsd:element name="send" type="Send"/>
 <xsd:element name="receive" type="Receive"/>
 <xsd:element name="listen" type="Listen"/>
 <xsd:element name="btxn" type="BeginTransaction"/>
 <xsd:element name="etxn" type="EndTransaction"/>
 <!-- Flow constructs -->
 <xsd:element name="if" type="IfStep"/>
 <xsd:element name="while" type="WhileStep"/>
 <xsd:element name="repuntil" type="RepeatUntilStep"/>
 <xsd:element name="foreach" type="ForEachStep"/>
 <xsd:element name="flow" type="FlowStep"/>
 <xsd:element name="exit" type="ExitStep"/>
 <!--Testing & Supplemantary constructs -->
 <xsd:element name="assign" type="Assign"/>
 <xsd:element name="group" type="Group"/>
 <xsd:element name="verify" type="Verify"/>
 <xsd:element name="call" type="CallStep"/>
 <xsd:element name="interact" type="UserInteraction"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="TestConstruct">
 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="TestStep">
 <xsd:complexContent>
 <xsd:extension base="TestConstruct">
 <xsd:attribute name="desc" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="MessagingStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:element name="config" type="gitb:Configuration" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="from" type="xsd:string" use="required"/>
 <xsd:attribute name="to" type="xsd:string" use="required"/>
 <xsd:attribute name="txnId" type="xsd:string" use="required"/>
 </xsd:extension>

CWA XXXXX:XXXX

81

 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Send">
 <xsd:complexContent>
 <xsd:extension base="MessagingStep">
 <xsd:sequence>
 <xsd:element name="input" type="Binding" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="ReceiveOrListen">
 <xsd:complexContent>
 <xsd:extension base="MessagingStep">
 <xsd:sequence>
 <xsd:element name="output" type="Binding" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Receive">
 <xsd:complexContent>
 <xsd:extension base="ReceiveOrListen"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Listen">
 <xsd:complexContent>
 <xsd:extension base="ReceiveOrListen"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="BeginTransaction">
 <xsd:complexContent>
 <xsd:extension base="TestConstruct">
 <xsd:sequence>
 <xsd:element name="config" type="gitb:Configuration" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="from" type="xsd:string" use="required"/>
 <xsd:attribute name="to" type="xsd:string" use="required"/>
 <xsd:attribute name="txnId" type="xsd:string" use="required"/>
 <xsd:attribute name="handler" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="EndTransaction">
 <xsd:complexContent>
 <xsd:extension base="TestConstruct">
 <xsd:attribute name="txnId" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="IfStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:element name="cond" type="Expression"/>
 <xsd:element name="then" type="Sequence"/>
 <xsd:element name="else" type="Sequence"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="WhileStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:element name="cond" type="Expression"/>
 <xsd:element name="do" type="Sequence"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="RepeatUntilStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:element name="do" type="Sequence"/>
 <xsd:element name="cond" type="Expression"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="ForEachStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:element name="do" type="Sequence"/>
 </xsd:sequence>
 <xsd:attribute name="counter" type="xsd:string" use="optional" default="i"/>
 <xsd:attribute name="start" type="xsd:integer" use="optional" default="0"/>
 <xsd:attribute name="end" type="xsd:integer" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="ExitStep">
 <xsd:complexContent>
 <xsd:extension base="TestStep"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="FlowStep">

CWA XXXXX:XXXX

82

 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:element name="thread" type="Sequence" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Assign">
 <xsd:complexContent>
 <xsd:extension base="Expression">
 <xsd:attribute name="to" type="xsd:string" use="required"/>
 <xsd:attribute name="append" type="xsd:boolean" use="optional" default="false"/>
 <xsd:attribute name="type" type="xsd:string" use="optional" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Group">
 <xsd:complexContent>
 <xsd:extension base="Sequence">
 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 <xsd:attribute name="desc" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Verify">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:element name="config" type="gitb:Configuration" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="input" type="Binding" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="handler" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="CallStep">
 <xsd:complexContent>
 <xsd:extension base="TestConstruct">
 <xsd:sequence>
 <xsd:element name="input" type="Binding" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="output" type="Binding" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="path" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="UserInteraction">
 <xsd:complexContent>
 <xsd:extension base="TestStep">
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="instruct" type="Instruction"/>
 <xsd:element name="request" type="UserRequest"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="with" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Instruction">
 <xsd:complexContent>
 <xsd:extension base="InstructionOrRequest"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="UserRequest">
 <xsd:complexContent>
 <xsd:extension base="InstructionOrRequest"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="InstructionOrRequest" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="TypedBinding">
 <xsd:attribute name="desc" type="xsd:string" use="required"/>
 <xsd:attribute name="with" type="xsd:string" use="required"/>
 <xsd:attribute name="contentType" type="gitb:ValueEmbeddingEnumeration" use="optional"/>
 <xsd:attribute name="encoding" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Expression">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="lang" type="xsd:string" use="optional"/>
 <xsd:attribute name="source" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="Binding">
 <xsd:complexContent>
 <xsd:extension base="Expression">
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="TypedBinding">
 <xsd:complexContent>
 <xsd:extension base="Binding">
 <xsd:attribute name="type" type="xsd:string" use="optional"/>

CWA XXXXX:XXXX

83

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:simpleType name="TestModuleTypes">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="MESSAGING"/>
 <xsd:enumeration value="VALIDATION"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

CWA XXXXX:XXXX

84

10 GITB Proof of Concept (PoC) Test Bed Implementation

This section presents an overview of the GITB Test Bed implementation, which has been developed in GITB
Phase 3 as Proof-of-Concept (PoC) for the GITB architecture and specifications.

The GITB PoC Test Bed is an open source project and its source code can be found at GitHub Repository7.
For code contribution, Git8, which is a distributed revision control and source code management (SCM)
system, is used. Git enables distributed development and provides strong support for non-linear (branching
and merging) development, which is important for the GITB PoC Test Bed implementation. 	

The collaboration model that is followed in GITB PoC Test Bed development adopts a feature based
workflow that suggests creation of a new branch for each new feature. When a new feature is decided to be
developed, a new development branch, which denotes a slightly different direction in which the development
is proceeding, is created. After the feature is implemented, if the feature is complete, it is merged into the
master development branch. Therefore, a development branch never affects a stable release.

10.1 Software Architecture

The software architecture behind the GITB PoC Test Bed consists of two main components – the GITB
Testbed component and the GITB Execution Interface.

• GITB Testbed is responsible for execution of conformance and interoperability tests through a set of
services.

• GITB Execution Interface provides a Graphical User Interface (GUI) and a REST API to manage a
number of user activities (account and SUT registration, conformance statement definition, etc.) and
testing operations by utilizing the services exposed by GITB Testbed.

Figure 10-110-1the interactions between the two main components and their modules.

Figure 10-1: GITB PoC Implementation Components

7	 https://github.com/srdc/gitb	
8	 http://git-‐scm.com/	

CWA XXXXX:XXXX

85

10.1.1 GITB Testbed

In order to be able to support and test a wide range of messaging protocols, business document formats and
document exchange choreographies, a modular approach needs to be embraced by GITB Testbed
component. This is achieved by adopting an interface-based architecture. The latter enables modularity and
adaptability, thus, increases maintainability and facilitates development of additional auxiliary modules. In
this way, the GITB Testbed component is built as a collection of modules, and API calls among its modules
can only be established through the defined interfaces. At software level, this structure is realized by utilizing
Apache Maven9, which is a software management and comprehension tool. With the help of interfaces
developed and Maven's powerful module management facilities, new modules can be developed and
existing modules can be integrated without requiring much effort. In this way, the GITB Testbed’s capabilities
can be further extended without hindering the Test Bed execution. Maven is also used for dependency
management, build automation, and for a broad range of plugins.

Each module within the GITB Testbed component has an XML file representation kept in a file named
pom.xml. This representation is called Project Object Model (POM) and is the central construct of the
Maven’s build management philosophy. The POM file describes the intended software project being
developed, its dependencies on other modules or external software libraries, the build order, managed
resources and needed plug-ins. It comes with pre-defined targets for managing the life-cycle phases such as
compilation, packaging and deployment.

A multi-module software project like the GITB Testbed is defined by a parent POM (or top-level POM)
referencing its modules. As a result of doing so, modules are grouped together. When a Maven command is
executed against the parent POM, the same command will be executed at child modules, as well. For
instance, building the parent will eventually build all modules, without the need of building each module
separately. The top-level POM of GITB Testbed components can be seen below.

Parent POM also defines a set of Maven coordinates: groupId is com.gitb, the artifactId is GITB and the
version is 1.0-SNAPSHOT. Furthermore, some global properties such as compiler.version, gitb.version are
defined in this POM, so that they are available in all child modules. The parent project does not create a JAR
or a WAR like other modules; instead, it is simply a POM that refers to its child modules. Additionally, every
child module has to specify who their parent POM is, in their POM files, too.

9	 http://maven.apache.org/	

CWA XXXXX:XXXX

86

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd">
 <properties>
 <gitb.version>1.0-SNAPSHOT</gitb.version>
 <compiler.version>1.7</compiler.version>
 </properties>

 <modelVersion>4.0.0</modelVersion>
 <name>GITB</name>
 <groupId>com.gitb</groupId>
 <artifactId>GITB</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.0</version>
 <configuration>
 <source>${compiler.version}</source>
 <target>${compiler.version}</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>9.2.2.v20140723</version>
 <configuration>
 <jvmArgs>-Dorg.eclipse.jetty.annotations.maxWait=180</jvmArgs>
 <contextXml>gitb-testbed-service/src/main/webapp/WEB-INF/jetty-context.xml</contextXml>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <modules>
 <module>gitb-core</module>
 <module>gitb-engine</module>
 <module>gitb-lib</module>
 <module>gitb-messaging</module>
 <module>gitb-remote-testcase-repository</module>
 <module>gitb-remote-modules</module>
 <module>gitb-testbed-service</module>
 <module>gitb-validator-validex</module>
 <module>gitb-validators</module>
 </modules>
</project>

10.1.2 GITB Testbed Modules

10.1.2.1 The Central Part of the GITB Testbed: gitb-core

gitb-core module is the central part of the modular architecture of the GITB Testbed component. It provides a
data model for the GITB type system explained in section 9.1.2, exceptions that may be thrown during the
execution of the Test Bed and classes used for messaging operations, as well as an internal API through a
set of interfaces for extendable functionalities. These functionalities encompass development of additional
messaging and validation modules as well as integration of external messaging and validation services,

CWA XXXXX:XXXX

87

external test case repositories and additional function registries. The current GITB Test Bed implementation
provides a number of already-developed functionalities which will be explained in the upcoming sections.

The internal APIs provided by gitb-core module are the following:

● IMessagingHandler: Provides abstract methods for implementing a new messaging service instead
of integrating an existing one. These methods have similar signatures and functionalities as the ones
defined in the Messaging (Simulation) Service Specifications. They are briefly explained below:

○ getModuleDefinition: Returns the module details including messaging configurations and
inputs that the module requires and the outputs that the module provides.

○ initiate: Creates a session between the messaging service client (SUT) and GITB Testbed
before any transaction is realized.

○ beginTransaction: Creates a communication between SUT and GITB Testbed with the
given session ID and configurations.

○ sendMessage: Allows GITB Testbed to send given messages to a SUT according to given
configurations over an existing transaction.

○ receiveMessage: Allows GITB Testbed to receive messages from a SUT according to given
configurations over an existing transaction.

○ listenMessage: Allows GITB Testbed to listen messages between two SUTs according to
given configurations over an existing transaction.

○ endTransaction: Destroys the given transaction in a session.
○ endSession: Destroys the session.

Figure 10-2: Class Diagram of IMessagingHandler Interface

● IModuleLoader: Provides abstract methods for retrieving proxies of external Content Validation
Services and Messaging (Simulation) Services implementing IValidationHandler and
IMessagingHandler interfaces.

○ loadValidationHandlers: Returns all integrated Content Validation Service proxies
implementing IValidationHandler interface.

○ loadMessagingHandlers: Returns all integrated Messaging (Simulation) Service proxies
implementing IMessagingHandler interface.

Figure 10-3: Class Diagram of IModuleLoader Interface

● IFunctionRegistry: An interface for writing user-defined, reflexive extension functions to offer
additional features beyond those specified in the XPath Specifications. In other words, extension
functions enable invocation of JAVA methods, as if calling XPath functions, during Test Case
processing since GITB Testbed uses an XPath 2.0 based expression language, by default.

CWA XXXXX:XXXX

88

An extension function is written in JAVA and invoked by using the pattern, prefix:localname() within a
Test Case document. The prefix must be the prefix associated with a namespace declaration in the
Test Case within tdl:Namespace element.

○ getName: Returns the unique name of the function registry to identify it among the other
function registries.

○ isFunctionAvailable: Returns a Boolean value indicating the existence of a function, which
is referenced from a test case, within a function registry.

○ callFunction: Invokes a function defined in a function registry with given name and
arguments.

Figure 10-4: Class Diagram of IFunctionRegistry Interface

● ITestCaseRepository: This interface defines generic methods for retrieval of various Testing
resources (Test Cases, Test Suites, scriptlets or various Test Artifacts) on demand. Modules
implementing this interface do not have to contain the Testing Resources locally within the module;
instead, they can provide access to external repositories. Therefore, any remote Test Resources
repository serving on a specific protocol (local or remote file system, TCP, HTTP, etc) can be
integrated with GITB Testbed by implementing the ITestCaseRepository methods according to the
protocol requirements.

○ getName: Returns the unique name of the Test Case repository to identify it among the
other Test Case repositories.

○ isTestCaseAvailable: Returns a Boolean value indicating the existence of a Test Case with
given ID in a repository.

○ getTestCase: Retrieves a tdl:TestCase object with given ID
○ isTestSuiteAvailable: Returns a Boolean value indicating the existence of a test suit with

given ID in a repository.
○ getTestSuite: Retrieves a tdl:TestSuite object with given ID
○ isScriptletAvailable: Returns a Boolean value indicating the existence of a scriptlet with

given ID in a repository
○ getScriptlet: Retrieves a tdl:Scriptlet object with given ID
○ isTestArtifactAvailable: Returns a Boolean value indicating the existence of a Testing

Resource with given path in a repository
○ getTestArtifact: Returns a JAVA InputStream for the Testing Resource from given path.

Figure 10-5: Class Diagram of ITestCaseRepository Interface

CWA XXXXX:XXXX

89

● IValidationHandler: Provides abstract methods for implementing a new validation service instead of
integrating an existing one. These methods have similar signatures and functionalities as the
methods defined in Content Validation Service Specifications and they are briefly explained below:

○ getModuleDefinition: Returns the module details including validation configurations and
inputs that the module requires.

○ validate: Validates the content with given inputs and configurations and returns a report
about the validation operation, providing the overall result and description of performed
assertions, found errors and warnings.

Figure 10-6 Class Diagram of IValidationHandler Interface

● ValidationService: Provides Web service methods of GITB Content Validation Service.
● MessagingService: Provides Web service methods of GITB Messaging (Simulation) Service.
● TestbedService: Provides Web service methods of GITB Testbed Service.

As mentioned before, the GITB Testbed component consists of several modules and gitb-core is the center
of this modular architecture. That is because gitb-core enables access to all these functionalities from a
single point, which is, in fact, a singleton class called ModuleManager. In order to achieve this behavior,
each implementor class, which denotes a concrete implementation of either the abovementioned interfaces
or abstract GITB Data Type class, registers itself as a service provider through the JAVA Service Provider
mechanism. This registration process is managed via one line of code by utilizing an annotation-driven
META-INF/services auto-generator library10. By annotating the implementor classes with
@MetaInfServices(<interface_name>.class) annotation provided by this library, a service provider
configuration file, whose name is the fully-qualified binary name of the interface (e.g.
com.gitb.messaging.IMessagingHandler) or abstract GITB Data Type class (com.gitb.types.DataType), is
generated automatically and this file contains the names of implementor classes, one per line. Then, when
GITB Testbed starts, the ModuleManager class aggregates all the implementations of the interfaces or GITB
Data Types by calling the load method, which scans all the service provider configuration files in the run-time
environment and returns them, of java.util.ServiceLoader class and serves them to the other modules.
Identification of validation and messaging modules is carried out with the identifiers defined in their module
definitions whereas each Test Case repository, function registry or GITB Data Type must have unique
names within a running instance. As it can be seen in the class diagram below, ModuleManager is a
singleton class. Concrete implementors are kept inside of private java.util.Map objects and accessed by
public accessors.

10	 http://metainf-‐services.kohsuke.org/	

CWA XXXXX:XXXX

90

Figure 10-7: Class Diagram of ModuleManager Class

Another important characteristic of gitb-core module is that it also provides the object models for XML
Schemas for TDL, TPL and Test Report format and Web Service stubs for TestbedService,
MessagingService and ValidationService. However, these object models are not provided directly. Instead,
gitb-core converts XML Schemas and WSDL files given in previous sections into JAVA objects by utilizing
Maven JAXB plug-in11 during generate-sources lifecycle phase of Maven. Therefore, every GITB Testbed
module requires gitb-core module as a dependency in order to coordinate testing activities.

10.1.2.1.1 Utility Classes: gitb-lib

gitb-lib module provides useful utility classes that define a set of methods performing common and reusable
functions to be used by other modules, without encapsulating any state information. These classes are
grouped under com.gitb.utils package and their job is summarized below:

● ActorUtils: Provides utilities for extracting information such as, actor IDs, actor configurations,
endpoint IDs, endpoint name from gitb:ActorConfiguration objects.

● BindingUtils: Provides a method determining whether all elements in a list of tdl:Binding have the
optional “name” attribute.

● ConfigurationUtils: Provides methods for manipulating gitb:Configuration objects.
● DataTypeUtils: Provides methods for conversion between GITB types and gitb:AnyContent.
● EncodingUtils: GITB Testbed is able to process messages in different types of encoding schemes.

This class provides utilities for conversion among those encodings.
● JarUtils: Provides methods for retrieving JAR files of external messaging or validation proxy

modules to access their module definitions.
● TimeUtils: Provides methods for performing formatting and conversion operations on date & time

information represented by JAVA String and Date classes.
● XMLDateTimeUtils: Provides methods for manipulating date & time information of type

XMLGregorianCalendar, which is the representation for W3C XML Schema 1.0 date/time datatypes.
● XMLUtils: Provides many methods for XML processing, conversion, transformation and etc.

10.1.2.1.2 Access to Test Case Artifacts: gitb-remote-testcase-repository

gitb-remote-testcase-repository module provides access to Testing Resources served by GITB Execution
Interface API, over HTTP protocol, so that Test Cases artifacts can be retrieved and processed for test
execution. There are only 2 classes within this module:

11	 https://jax-‐ws-‐commons.java.net/jaxws-‐maven-‐plugin/	

CWA XXXXX:XXXX

91

● RemoteTestCaseRepository: Implements ITestCaseRepository interface to retrieve Testing
Resources from GITB Execution Interface. Also, utilizes a LRU (Least Recent Used) Cache
mechanism in order to avoid repetitive HTTP calls for same resources.

● TestCaseRepositoryConfiguration: Provides configuration parameters such as URLs of GITB
Execution Interface repository services to retrieve Test Cases and Artifacts. Configurations are
retrieved from remote-testcase-repository.properties located in the resources folder. The content
of remote-testcase-repository.properties file can be seen below:

#name of the placeholder string in remote.testcase.repository.url configuration
remote.testcase.test-id.parameter = test_id

#name of the placeholder string in remote.testresource.repository.url configuration
remote.testcase.resource-id.parameter = resource_id

#URL of the test case provider service
remote.testcase.repository.url = http://localhost:9000/repository/tests/:test_id/definition

#URL of the test resource provider service
remote.testresource.repository.url = http://localhost:9000/repository/suites/:resource_id

10.1.2.1.3 Validators: gitb-validators

This module provides a built-in validation architecture as well as a simple reporting mechanism for
generating validation results with basic validators. The latter are, actually, concrete implementations of
IValidationHandler interface of the internal API provided by gitb-core module. This architecture and
reporting mechanism is responsible for checking the validity and syntactical correctness of the business
messages/documents retrieved by messaging adapters and for reporting the overall result of validation
operation with performed assertions, found errors and warnings.

Currently, gitb-validators module provides 3 validators with their module definition information. Each module
converts the corresponding XML file containing the module definition into a JAVA object with the help of
XMLUtils class provided by gitb-lib module. An example module definition can be seen below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<module xmlns="http://www.gitb.com/core/v1/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="XSDValidator" uri="urn:com:gitb:validation:XSDValidator" xsi:type="ValidationModule">
 <!--Describes the metadata of the validator (e.g. its name, version, description, etc) -->
 <metadata>
 <name>XSD Validator</name>
 <version>1.0</version>
 </metadata>
 <!--Inputs to this validator. Generally, a validator takes two inputs: validator schema and content to be validated -
->
 <inputs>
 <param type="schema" use="R" name="xsddocument" desc="XSD Document" />
 <param type="object" use="R" name="xmldocument" desc="XML Document to be validated" />
 </inputs>
</module>

CWA XXXXX:XXXX

92

Figure 10-8: Class Diagram of GITB Validators

● SchematronValidator: Validates XML content against a Schematron, which is a rule-based
validation language for making assertions about the presence or absence of XML elements12, by
using ph-schematron13 library. Schematron files may import external Schematron’s and resources
and they must be resolved during document validation. Therefore, SchematronValidator, utilizes a
helper resource resolver class, SchematronResolver.

● XPathValidator: Evaluates an XPath expression on a given XML content. One requirement of XPath
validation is that the evaluation result of a provided XPath expression must yield a Boolean value.

● XSDValidator: Validates XML content against an XSD Schema, by using JAVA XML Validation API.
XSD files may import external XSD files and they must be resolved during document validation.
Therefore, XSDValidator, utilizes a helper resource resolver class, XSDResolver.

10.1.2.1.4 Messaging Adapters: gitb-messaging

This module provides a comprehensive messaging architecture with basic messaging adapters which are
concrete implementations of IMessagingHandler interface of the internal API provided by gitb-core module.
This architecture enables the communication with SUTs over specified transport and communication
protocols and provides a simple validation mechanism to check if retrieved messages conform to transport
level specifications. To enable communication over different protocols at the same time, messaging
architecture is designed to consist of 3 layers.

1. Messaging API
Messaging API enables 3 main types of communication: receive, send and listen. As mentioned before,
GITB Testbed may receive messages from SUTs, send messages to SUTs and listen messages
between two SUT actors. listen operation is actually a combination of receive and send operations
where the testbed receives message from sender SUT actor and sends the received message to

12	 http://www.schematron.com/	
13	 https://github.com/phax/ph-‐schematron	

CWA XXXXX:XXXX

93

receiver SUT actor, therefore “listens” the communication between them. In order to realize the specified
communication type in a generic and isolated way, 3 generic interfaces are designed: IReceiver,
ISender and IListener.

IReceiver interface defines the following methods:

● receive: Performs the actual receive operation according to transport level specifications.
● onError: Called when an error occurs during receive operation.
● onEnd: Called when receive operation completes.

ISender interface defines the following methods:

● send: Performs the actual send operation according to transport level specifications.
● onEnd: Called when send operation.

IListener interface defines the following operations.

● listen: Performs the listen operation by utilizing receive method of IReceiver, then send method of
ISender.

● tranformMessage: There may be differences between the structure of the input messages for send
operation and the structure of the output messages retrieved from receive operation. Considering
that, listen message is a combination of receive and send operations, message received from
receive operations must be transformed into the appropriate message format for send operation.
Therefore listeners must implement this method to perform such a transformation.

● transformConfigurations: Like in the case of transformMessage method, this method must be
implemented to transform receive operation configurations into send operation configurations.

Currently, gitb-messaging module supports two core protocols of the Internet protocol suite: UDP and
TCP. Thereby, two additional interfaces are provided for each of communication types.
ITransactionReceiver and IDatagramReceiver interfaces extend IReceiver and realize receive
operation over TCP and UDP protocols, respectively. ITransactionSender and IDatagramSender
interfaces extend ISender interface and enable send operation over TCP and UDP protocols,
respectively. Finally, ITransactionListener and IDatagramListener extend IListener interface and
realize listen operation over TCP and UDP protocols, respectively. These six interfaces are implemented
by corresponding abstract classes to construct a basis for the internal messaging API in which the actual
communication is established with network sockets. AbstractTransaction* implementers utilizes
java.net.Socket classes and perform low-level operations such as creation of sockets and blocking
listener threads until a message received for TCP communication while AbstractDatagram*
implementers benefit from java.net.DatagramSocket and java.net.DatagramPacket classes and perform
similar low-level operations over UDP protocol. When developing receivers, senders or listeners for a
specific protocol, appropriate abstract classes described above should be extended and implemented so
that, implementation of receive, send and listen operations for TCP and UDP protocols can be separated
from each other. Finally, lifecycle of receivers, senders and listeners are handled by corresponding
messaging handlers which form the highest level of the layered architecture of gitb-messaging module
and their details will be explained later.

CWA XXXXX:XXXX

94

Figure 10-9: Class Diagram of Messaging API Layer

2. Messaging Servers
In order to be able to listen for connections from SUTs, gitb-messaging module utilizes an internal server
architecture based on network sockets. There are two main interfaces to support different types of
protocols:

● IMessagingServerWorker: Provides the following methods to initiate/complete listening for
connections at network socket level.

○ start: Starts a listener JAVA Thread.
○ stop: Closes the listener JAVA Thread.
○ isActive: Checks if the listener JAVA Thread is active.
○ getPort: Returns the port number listened.
○ getNetworkSessionManager: Returns the NetworkSessionManager instance. The

NetworkSessionManager class maps IP addresses of SUTs to testing sessions and provides
information on these mappings.

● IMessagingServer: This interface provide methods for creating messaging servers for different
types of protocols and administration of IMessagingServerWorker instances which internally
manages connections with JAVA Threads (workers). This interface is implemented by
AbstractMessagingServerWorker abstract class.

○ getActiveWorkers: Returns all the active workers.
○ listenNextAvailablePort: Creates a worker to listen next available port from a range of port

numbers.
○ close: Closes a connection for specified protocol.

There are two concrete implementations of AbstractMessagingServerWorker class. They are
TCPMessagingServerWorker and UDPMessagingServerWorker for accepting connections by utilizing
JAVA Threads over TCP and UDP protocols, respectively. In addition, two concrete implementations of
IMessagingServer exist. They are TCPMessagingServer and UDPMessagingServer for managing
lifecycle TCP and UDP workers, respectively. As in the case of messaging API, lifecycle of servers are
managed by messaging handlers.

CWA XXXXX:XXXX

95

Figure 10-10-10: Class Diagram of Messaging Server Layer

3. Messaging Handlers
Messaging handlers fulfill important tasks including management of the communication sessions and
transactions between Testbed and external SUTs by utilizing internal messaging API and servers;
administration of receiver, sender, listener and server lifecycle; validation of input/output messages
to/from receivers/senders/listeners as well as their configuration parameters according to transport level
specifications; and reporting of erroneous and successful communication. AbstractMessagingHandler
abstract class provides base implementations of the IMessagingHandler interface methods and other
utilities. For this purpose, it exposes the aforementioned messaging mechanism to be utilized by other
modules. At the moment, the gitb-messaging module provides the following messaging handlers. The
hierarchy between them can be seen in the class diagram below.

● TCPMessagingHandler: Manages network sockets to enable communications over TCP which is at
network layer of the Internet protocol suite. At application level, the following messaging handlers
have been implemented:

○ HttpMessagingHandler: Handles HTTP communication by utilizing Apache
HttpComponents14 library with the network sockets created at transport layer. The following
messaging handlers are derived from HttpMessagingHandler:

■ HttpsMessagingHandler: Provides secure HTTP communication on top of
SSL/TLS protocols by utilizing X.509 certificates.

● PeppolAS2MessagingHandler: Derived from HttpsMessagingHandler,
PeppolAS2MessagingHandler manages communications according to
PEPPOL15 Transport Level Specifications16 over AS2 protocol which is
based on HTTP and S/MIME.

14	 https://hc.apache.org/	
15	 http://www.peppol.eu/	

CWA XXXXX:XXXX

96

■ SoapMessagingHandler: Allows communications over XML based SOAP protocol.
■ SMPMessagingHandler: Simulates Service Metadata Publisher architecture17

specified in PEPPOL project.
● UDPMessagingHandler: Manages datagram sockets and packets to enable communications over

UDP which is in network layer of the Internet protocol suite. At application level, the following
messaging handlers have been implemented:

○ DNSMessagingHandler: Handles sending/receiving DNS queries.
■ SMLMessagingHandler: Simulates Service Metadata Locator architecture18

specified in PEPPOL project.

Figure 10-11: Class Diagram of Messaging Handler Layer

16	 https://joinup.ec.europa.eu/svn/peppol/TransportInfrastructure/ICT-‐Transport-‐AS2_Service_Specification-‐2014-‐01-‐
15.pdf	
17	 https://joinup.ec.europa.eu/svn/peppol/PEPPOL_EIA/1-‐ICT_Architecture/1-‐ICT-‐Transport_Infrastructure/13-‐ICT-‐
Models/ICT-‐Transport-‐SMP_Service_Specification-‐110.pdf	
18	 https://joinup.ec.europa.eu/svn/peppol/PEPPOL_EIA/1-‐ICT_Architecture/1-‐ICT-‐Transport_Infrastructure/13-‐ICT-‐
Models/ICT-‐Transport-‐SML_Service_Specification-‐101.pdf	

CWA XXXXX:XXXX

97

When a communication is about to be established by messaging handlers, a session between the SUT
and Testbed is created by utilizing methods of a singleton, independent SessionManager class. All
transactions are realized within a communication session. The SessionManager class also provides a
number of methods for messaging handlers to manipulate sessions. The session concept is realized by
the SessionContext class which keeps session-related information such as session ID, IP address and
port of the SUT, workers handling the communication threads and a list of TransactionContext objects.
As its name implies, the transaction concept is realized by TransactionContext classes. They keep
transaction-related information such as transaction ID, configuration parameters that messaging
handlers demand and, most importantly, objects (messages, intermediate results) that are created
during the transaction.

Figure 10-12: Class Diagram for Session Management

As mentioned before, gitb-messaging module currently provides 9 messaging adapters with their module
definition information. Each module converts the corresponding XML file containing the module definition
into a JAVA object with the help of the XMLUtils class provided by the gitb-lib module. An example
module definition can be seen below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<module xmlns="http://www.gitb.com/core/v1/"

CWA XXXXX:XXXX

98

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="HttpMessaging" uri="urn:com:gitb:messaging:HttpMessaging" xsi:type="MessagingModule">
 <!--Describes the metadata of the validator (e.g. its name, version, description, etc) -->
 <metadata>
 <name>HTTP Messaging</name>
 <version>1.0</version>
 </metadata>
 <!-- Input message fragments to be sent to SUTs for senders -->
 <inputs>
 <param name="http_version" type="string" use="O"/>
 <param name="http_headers" type="map" use="O"/>
 <param name="http_body" type="binary" use="O"/>
 </inputs>
 <!-- Output messages fragments after receiving messages from SUTs for receivers -->
 <outputs>
 <param name="http_method" type="string"/>
 <param name="http_version" type="string"/>
 <param name="http_path" type="string" use="O"/>
 <param name="http_headers" type="map" use="O"/>
 <param name="http_body" type="binary" use="O"/>
 </outputs>
 <!-- Configurations that are expected from SUTs -->
 <actorConfigs>
 <param name="network.host" desc="Hostname/IP address for the actor"/>
 <param name="network.port" desc="Port address for the actor"/>
 <param name="http.uri" use="O" desc="Request URI for Http message">/</param>
 </actorConfigs>
 <!-- Configurations for receive operations for receivers -->
 <receiveConfigs>
 <param name="status.code" use="O" desc="Status code for responses"/>
 </receiveConfigs>
 <!-- Configurations for send operations for senders -->
 <sendConfigs>
 <param name="http.method" desc="Http Method to use"/>
 <param name="http.uri" use="O" desc="Request URI for Http message">/</param>
 <param name="http.uri.extension" use="O" desc="Http URI extension for the address"/>
 <param name="status.code" use="O" desc="Status code for responses"/>
 </sendConfigs>
</module>

10.1.2.1.5 Central Processing Module: gitb-engine

gitb-engine is the central processing module of the GITB Testbed component and responsible for Test Case
execution. It utilizes the internal API provided by gitb-core and its concrete implementations realized in
abovementioned modules. In addition, it processes the requests received by TestbedService, performs the
required actions according to the Test Bed Service Specifications explained in section 8.3 and returns the
results.

When a request is received by TestbedService, it is delivered to an appropriate manager class to be
processed. The TestEngine singleton class is responsible for test execution, whereas the TestCaseManager
provides utilities for various Test Case operations. Moreover, when Test Bed users request to execute a Test
Case, a session needs to be created for each execution. The SessionManager singleton class manages
user sessions and contains all test execution related data within instances of the TestCaseContext class.
TestCaseContext stores all intermediate results, SUT configurations, messaging context, etc. during a test
session.

Intermediate results must be treated specially, since these results are stored in variables and may be
referenced from other test steps. For this purpose, intermediate results or variables, in short, are stored in a
class called TestCaseScope and they are accessed by their variable names. Variables in TestCaseScope
are globally accessible from each step of the test execution. However, variables created in a Scriptlet are
local variables and cannot be reached outside of it.

CWA XXXXX:XXXX

99

Variables defined in a Test Case can be referenced from XPath expressions in the form of $variable_name.
In that case, its value must be resolved in order to evaluate the XPath expression and proceed to the next
steps. For this purpose, gitb-engine module provides a class VariableResolver which implements
XPathVariableResolver JAVA XPath API interface whose resolveVariable method is called automatically
when a variable is referenced. The VariableResolver class has access to TestCaseScope and can retrieve
the value of a variable by its name. If the referenced variable is not found in TestCaseScope, then a null
value is returned.

The same mechanism applies to resolve user defined, extensive functions referenced from an XPath
expression. In order to resolve user defined functions, gitb-engine module provides a class
FunctionResolver which implements XPathFunctionResovler JAVA XPath API interface whose evaluate
method is called automatically when a function that is not a default XPath function, is referenced. Then, the
FunctionResovler scans all the IFunctionRegistry implementations through the ModuleManager, invokes the
first available function having the same signature as the referenced function and returns the value returned
from the function. If no function is found among all IFunctionRegistry implementers, a null value is returned.

As mentioned before, an extensive function is invoked by using prefix:localname() pattern. For a successful
user defined function invocation, the prefix must be resolved, as well, to a valid namespace URI defined in
tdl:Namespace element. gitb-engine module provides a class NamespaceContext which implements
javax.xml.namespace.NamespaceContext interface, for the resolution of prefixes. The NamespaceContext
class has access to TestCaseContext class through TestCaseScope and can retrieve corresponding
namespace URI’s for each prefix and vice versa. If the prefix is valid, then FunctionResolver class tries to
resolve the function and invoke it.

Figure 10-13: Class Diagram of Test Engine

CWA XXXXX:XXXX

100

In order to enable concurrent and asynchronous execution of several test cases at the same time in parallel,
the Akka framework19 is used. Akka is a framework that enables development of distributed and concurrent
applications. The philosophy underlying Akka embraces the actor model which is a mathematical model of
concurrent computation that treats actors as the universal primitives of concurrent computation. Akka
concurrency is asynchronous and achieved by actors sending messages to each other. In other words, Akka
actors are lightweight concurrent entities and process messages in an asynchronous way by using an event-
driven receive loop. Actors are created and bound within an ActorSystem and each of them is a part of an
actor-hierarchy.

TestEngine singleton class has an ActorSystem object which is responsible for creating actors. There are
two types of actors used within Testbed execution: Session and Processing Actors. When a user demands to
execute a Test Case, a SessionActor is created to manage the test execution with commands such as, start,
stop, configure etc. After gitb-engine retrieves the Test Case with one of the ITestCaseRepository
implementers and receives start command, it creates a TestCaseProcessActor which takes over the test
execution. TestCaseProcessActor then parses the Test Case and employs appropriate Test Step Processor
Actors to execute each test step: AssignStepProcessorActor to process Assign test step,
ReceiveStepProcessorActor to process Receive step and so on. In other words, there is a corresponding
processor actor for each test step identified in section 9.3.6. After executing each of the test steps,
TestCaseProcessorActors notifies the corresponding SessionActor. The latter notifies the TestbedService
that the test execution is completed.

Figure 10-14: Class Diagram of the Actor System Based on Akka

During a test execution, it is natural that run-time exceptions can be thrown as it is very likely that gitb-engine
may have to process erroneous input from SUTs. For instance, a validator may come across an invalid

19	 http://akka.io	

CWA XXXXX:XXXX

101

document or a messaging handler may receive a message that does not conform to transport level
specifications. These exceptions are caught during test execution and sent to gitb-execution-interface as a
test step report indicating the cause of failure. SUT administrators can review the report and fix problematic
parts of their systems.

In order to handle exceptions in each module, a common exception model is created and provided by gitb-
core module. The abstract GITBEngineRuntimeException class is the base of the common exception
model. Its concrete implementation, GITBEngineInternalError, provides the necessary information
regarding the cause of the exception thrown during test execution. To implement such behaviour, when an
exception (of any run-time or compile-time exception type) is caught, it is wrapped within
GITBEngineInternalError and rethrown so that it is caught within gitb-engine module. After gitb-engine
catches the exception of the type GITBEngineInternalError, it creates a report from it and sends the report to
gitb-execution-interface, as mentioned before.	

	

Figure 10-15: GITB Testbed Exception Model

	

10.1.2.1.6 GITB Test Bed Service: gitb-testbed-service

The gitb-testbed-service module provides the implementation (TestbedServiceImpl class) for Testbed
Service Specifications. It packages every JAR file for the GITB Testbed component module into a WAR
(Web Application Archive) which can then be deployed to an application server. It also contains the
necessary files (deployment description - web.xml, JAX-WS RI deployment descriptor - sun-jaxws.xml, Jetty
deployment description - jetty-context.xml) to deploy the WAR file as a web application. The deployment can
be either manually by copying WAR file into appropriate application server folders or automatically by using
Maven plugins. The current GITB Testbed implementation uses maven-jetty-plugin to deploy the WAR file
onto an Jetty Application server20.	

20	 http://www.eclipse.org/jetty/	

CWA XXXXX:XXXX

102

10.1.2.1.7 Integration of Remote Modules: gitb-remote-modules

gitb-remote-modules module enables integration of external validation and messaging services and
implements the IModuleLoader interface methods. To integrate a remote module, a module definition XML
file must be created and put into the resources folder. Additionally, a separate Maven module with Validation
Service or Messaging Service and client implementations for the external service must be developed. In this
way, at the start of GITB Testbed component, the integrated modules are loaded by ModuleManager class in
gitb-core module and will be ready to be used. Currently, Validex21 which is an online XML message
validation service has been integrated with GITB Testbed.	

	

10.1.3 GITB Execution Interface

The GITB Execution Interface is designed to be the management interface of the GITB Testbed component
to be exposed to outer world. Users of the GITB Execution Interface can perform their requests through a
Web GUI to a REST server. The latter then delivers these requests to GITB Testbed component through
TestbedService. Thus, the GITB Execution Interface is designed to manage the test executions within the
GITB Testbed component on a graphical user interface through REST Services. In this section, the design
and implementation details of the GITB Execution Interface are presented.	

At software level for the client side implementation, there are numerous JavaScript frameworks providing
different functionalities at different level. For the GITB Execution Interface, the Play Framework is selected.
The latter is an open source Web application framework written in Scala and Java and follows the MVC
(Model View Controller) architecture. The MVC architecture provides rich API for models and views, and
integrates with the REST services provided by the framework. Because of the model-view separation as well
as JSON based REST support, the Play Framework fits perfect for the requirements of GITB Execution
Interface.	

10.1.3.1 How to Use the GITB POC Interface

Figure	 10-‐1610-‐16 presents the main screen of the GITB Execution Interface Web GUI. On the upper right
corner, information about the authenticated user is shown along with a dropdown menu to manage settings
and invalidate the session information. The Tutorial button navigates users to a page with a viewlet22 on
how to use GITB Execution Interface. Moreover, Systems returns the users to the main screen.	

	

Figure 10-16: GITB Execution Interface Main Screen

21	 https://validex.net/	
22	 Available	 on	 https://www.youtube.com/watch?v=4K7eEvUS1UA	

CWA XXXXX:XXXX

103

When users login to the system, the main screen retrieves all the available SUTs and displays them. All
users have to register their systems as SUTs in order to be able execute Test Cases for them. This is
achieved by clicking on the New System button. A popup window is then displayed asking some information
regarding the SUT as illustrated in Figure	 10-‐1710-‐17.	

	

Figure 10-17: Screen for Adding a New System

After entering the required information, SUT is registered, but not ready to be tested yet. In order to be able
initiate a test for a SUT, a conformance statement must be defined, after clicking on SUT name. By defining
a conformance statement, users tell the GITB Execution Interface that the SUT conforms to a specific
eBusiness standard or specification. They get a number of Test Cases to prove their conformance.	

Creating a conformance statement is a four-step process. In the first step, the appropriate eBusiness domain
selected. All available specifications of this domain are then retrieved and the user is asked to select the
relevant specification in the second step. In the third step, the actors implemented by the SUT are selected.
Finally, if the selected actors define any optional parameters, they are selected in the fourth step.	

CWA XXXXX:XXXX

104

	
	

	

	

Figure 10-18: Steps for Defining a Conformance Statement

After a conformance statement is defined, it should be selected to continue with the Conformance Statement
Detail page. Each SUT actor defines one or more endpoints to be reached over the network. For each
endpoint, a number of configuration parameters related to the SUT itself or its endpoint have to be provided
to GITB Testbed, so that it can use these parameters during test execution. These configuration parameters
can be simple string values (i.e IP address, port number, etc) as well as files (public keys, processable text
files, etc). Finally, all Test Cases that are related to the selected actors are listed at the bottom of this page.
In order to prove the claim of conformance, all these Test Cases have to be executed and passed.	

CWA XXXXX:XXXX

105

	

Figure 10-19: Conformance Statement Details Page

CWA XXXXX:XXXX

106

After selecting a Test Case, the user is navigated to the test execution page. Test execution is a three-step
process. In the first step, all the SUT configurations are checked against missing inputs. If there are any
missing configurations, the Web GUI does not let the user proceed to the next steps. In the second step, a
testing session within GITB Testbed is created for the user. After that, configuration parameters of each actor
that is simulated by the GITB Testbed component are listed. At this point, SUT admins have to configure
their SUTs according to these configurations. Finally, the third step is where the actual test execution takes
place. Here all the actors, the messaging choreography between them, the validation steps etc. are
displayed by means of sequence diagram elements. The actor role which the SUT plays is indicated with
(SUT). Actors, that are simulated by the GITB Testbed component and the GITB Testbed itself are indicated
with (SIMULATED) and Test Engine, respectively. Test execution starts by clicking the Start button. 	

	

Figure 10-20: Test Execution Interface

After a test case is executed, the Web GUI indicates success or failure of each step with green and red
arrows, respectively. Moreover, GITB Testbed creates reports summarizing the results of each test step as
well as their execution time, message content and headers (if it is a messaging step), validated and validator
document content (if it is a validation step) and so on. 	

CWA XXXXX:XXXX

107

	

Figure 10-21: Test Report Screen Indicating the Errors

The GITB Execution Interface also provides an Admin Panel for system administrators. Through this panel,
system admins add new domains, specifications and deploy Test Suites.	

CWA XXXXX:XXXX

108

	

Figure 10-22: GITB Execution Interface Admin Panel

10.1.3.2 REST API

The GITB Execution Interface’s REST API is responsible for managing the functionalities explained in
previous section and exposing them to the outer-world as well as invoking the TestbedService methods of
GITB Testbed. Furthermore, the API enables persistence of user and Test Case information within a MySQL
database and provides access to them for authorized users. The GITB Execution Interface’s REST API
provides following services:	

● AccountService: Provides methods for user and vendor related operations such as registration,
user/vendor profile retrieval, etc.

● AuthenticationService: Provides methods for user sessions by providing them access tokens.
Secure services can only be invoked by access tokens.

● ConformanceService: Provides methods invoked when defining conformance statement for SUTs
● ReportService: Enables persistence of test results and reports retrieved from GITB Testbed and

provides them to users on demand.
● RepositoryService: Provides access to Test Cases and resources on demand.

RemoteTestCaseRepository retrieves test artifacts from this service.
● SystemService: Provides methods for creating and managing SUTs.
● TestService: Provides methods to enable access to GITB Testbed through TestbedService.
● TestSuiteService: Provides methods for deployment/undeployment of test suites
● WebSocketService: Delivers results of execution of test steps to Web GUI through WebSockets.

CWA XXXXX:XXXX

109

10.2 Case Studies with POC Test Bed

10.2.1 UBL Use Case - Conformance Tests for PEPPOL BIS4A Invoice Only Specification

The GITB PoC Test Bed implements a Test Scenario for the PEPPOL BIS4A Invoice Only Profile, which is a
real-world eBusiness specification in the public procurement area (see section 15). A Test Suite with a set of
Test Cases have been developed for this purpose. The Test Suite can be found in test-suites folder which
comes along with the source code. More details regarding Test Suite and Test Cases can be found in the
following sections.	

10.2.1.1 Test Suite Definition

Basically, a Test Suite defines a number of Test Cases and the actors of the specification that take part in a
Test Case. Furthermore, actors may define endpoints which denote the network protocol that the actor is
accessible from, with a set of configuration parameters (e.g. network host, port, etc). As an example in the
Test Suite below, all the Test Cases and actors of this suite are listed. It should be noted that, the Test Suite
does not specify any relationships among the actors, it rather defines the endpoints and their configurations. 	

<?xml version="1.0" encoding="UTF-8"?>	
<testsuite xmlns="http://www.gitb.com/tdl/v1/" xmlns:gitb="http://www.gitb.com/core/v1/">	
 <!--Describes the metadata of the test suite (e.g. its name, version, author(s), description, etc) -->	
 <metadata>	
 <gitb:name>Peppol_BIS_4A_Invoice</gitb:name>	
 <gitb:version>0.1</gitb:version>	
	 	 	 	 	 </metadata>	
	
 <!-- All the actors that takes part in the business processes in the specification which are related with the test
scenarios in this test suite -->	
 <actors>	
 <gitb:actor id="SenderAccessPoint">	
 <gitb:name>Sender Access Point</gitb:name>	
 <gitb:desc>Sends business messages to a Receiver Access Point using the AS2 protocol.</gitb:desc>	
	
 <!-- List of configurations for enabling communication with this endpoint -->	
 <gitb:endpoint name="as2">	
 <gitb:config name="network.host" />	
 <gitb:config name="network.port" />	
 <gitb:config name="public.key" kind="BINARY"/>	
 <gitb:config name="participant.identifier"/>	
 </gitb:endpoint>	
 </gitb:actor>	
 <gitb:actor id="ReceiverAccessPoint">	
 <gitb:name>Receiver Access Point</gitb:name>	
 <gitb:desc>Receives business messages from Sender Access Point using the AS2 protocol and validates
it</gitb:desc>	
 <gitb:endpoint name="as2">	
 <gitb:config name="network.host" />	
 <gitb:config name="network.port" />	
 <gitb:config name="http.uri" use="O"/>	
 <gitb:config name="public.key" kind="BINARY"/>	
 <gitb:config name="participant.identifier"/>	
 </gitb:endpoint>	
 </gitb:actor>	
 <gitb:actor id="ServiceMetadataLocator">	
 <gitb:name>Service Metadata Locator</gitb:name>	
 <gitb:desc>A service which provides a client with the capability of discovering the Service Metadata Publisher
endpoint associated with a particular participant identifier.</gitb:desc>	
 <gitb:endpoint name="http">	
 <gitb:config name="network.host" />	
 <gitb:config name="network.port" />	
 </gitb:endpoint>	
 </gitb:actor>	

CWA XXXXX:XXXX

110

 <gitb:actor id="ServiceMetadataPublisher">	
 <gitb:name>Service Metadata Publisher</gitb:name>	
 <gitb:desc>Provides a service on the network where information about services of specific participant
businesses can be found and retrieved.</gitb:desc>	
 <gitb:endpoint name="http">	
 <gitb:config name="network.host" />	
 <gitb:config name="network.port" />	
 </gitb:endpoint>	
 </gitb:actor>	
 </actors>	
	
 <!-- References to test cases of this test suite-->	
 <testcase id="PEPPOL-Interoperability-Invoice" />	
 <testcase id="PEPPOL-ReceiverAccessPoint-Invoice" />	
 <testcase id="PEPPOL-SenderAccessPoint-Invoice-BusDox" />	
 <testcase id="PEPPOL-SenderAccessPoint-Invoice-BusDox-Validex"/>	
 <testcase id="PEPPOL-SenderAccessPoint-Invoice-Validation" />	
 <testcase id="PEPPOL-SenderAccessPoint-Invoice-Validex" />	
</testsuite>	

	

10.2.1.2 Development of the Necessary Messaging Handlers

The gitb-messaging module provides a set of widely used network protocols (e.g. TCP, HTTP(S), SOAP).
The messaging architecture behind the gitb-messaging module allows extending these protocols in order to
develop more complex ones. For instance, three additional messaging adapters have been developed to
implement this case study. The AS2 adapter is built by extending the HTTPS adapter, Service Metadata
Publisher (SMP) is developed on the HTTP adapter and Service Metadata Locator (SML) is implemented on
top of the DNS adapter. Each new messaging adapter inherits the capabilities of the base adapter; therefore
developing new adapters is basically adding new rules or abilities on already existing protocol
implementations.	

10.2.1.3 Definition of Test Artifacts

Test Cases are very likely to require one or more external resources such as validation schemas or message
templates, during test execution. Therefore, required Test Artifacts must be included within a Test Case and
be referenced with their relative paths to the Test Case. After that, their content is retrieved by the configured
Test Case repository adapter and utilized during the test execution. 	

A Test Case defines all the Testing Resources imports, namespace and variable declarations, target actors
of specification with their roles and test steps to execute. Target actors must be selected from the Test Suite
and their role must be specified as either SUT (if the role will be played by the real SUT) or SIMULATED	 (if	
the actor will be simulated by GITB Testbed). If there will be any communication between actors, the
messaging choreography between them must be defined by a number of transactions (see the example
below). More information can be found in the Test Case below.	

<?xml version="1.0" encoding="UTF-8"?>	
<testcase id="PEPPOL-SenderAccessPoint-Invoice-Definition of The Test Case”>

BusDox" xmlns="http://www.gitb.com/tdl/v1/" xmlns:gitb="http://www.gitb.com/core/v1/">	
 <!--Describes the metadata of the test case (e.g. its name, version, authors, description, etc) -->	
 <metadata>	
 <gitb:name>PEPPOL-SenderAccessPoint-Invoice-BusDox</gitb:name>	
 <gitb:type>CONFORMANCE</gitb:type>	
 <gitb:version>0.1</gitb:version>	
 <gitb:description>The objective of this Test Scenario is to ensure the Sender Access Point (the System Under
Test) is capable of querying both SML and SMP as well as submitting a conformant PEPPOL BIS 4A electronic invoice
to a Receiver Access Point using the AS2 protocol. Then submitted document is validated by UBL 2.1 schema and
PEPPOL Schematron rules.	
 </gitb:description>	

CWA XXXXX:XXXX

111

 </metadata>	
	
 <!-- Namespace declarations used for expressions when referring the element or attribute names in a document or
message model -->	
 <namespaces>	
 </namespaces>	
	
 <!-- Provides the details about the test artifacts for test engine so that it can remotely access and use them during the
test execution. -->	
 <imports>	
 <artifact type="schema" encoding="UTF-8"
name="UBL_Invoice_Schema_File">Peppol_BIS_4A_Invoice/artifacts/UBL/maindoc/UBL-Invoice-2.1.xsd</artifact>	
 <artifact type="schema" encoding="UTF-8" name="PEPPOL_BII_CORE_Invoice_Schematron_File"
>Peppol_BIS_4A_Invoice/artifacts/PEPPOL/BII CORE/BIICORE-UBL-T10-V1.0.sch</artifact>	
 <artifact type="schema" encoding="UTF-8"
name="PEPPOL_BII_RULES_Invoice_Schematron_File">Peppol_BIS_4A_Invoice/artifacts/PEPPOL/BII
RULES/BIIRULES-UBL-T10.sch</artifact>	
 <artifact type="schema" encoding="UTF-8" name="SBDH_Schematron_File"
>Peppol_BIS_4A_Invoice/artifacts/PEPPOL/SBDH.sch</artifact>	
 <artifact type="object" encoding="UTF-8"
name="SMP_Metadata_Template">Peppol_BIS_4A_Invoice/artifacts/PEPPOL/peppol-smp-metadata-
template.xml</artifact>	
 </imports>	
	
 <!-- Declare the actors who are participating in this test case. The System-Under-Test role is SUT whereas roles of
actors simulated by GITB Tested are indicated as SIMULATED -->	
 <actors>	
 <gitb:actor id="SenderAccessPoint" name="SenderAccessPoint" role="SUT" />	
 <gitb:actor id="ReceiverAccessPoint" name="ReceiverAccessPoint" role="SIMULATED">	
 <gitb:endpoint name="as2">	
 <gitb:config name="participant.identifier">0088:12345test</gitb:config>	
 </gitb:endpoint>	
 </gitb:actor>	
 <gitb:actor id="ServiceMetadataLocator" name="ServiceMetadataLocator" role="SIMULATED" />	
 <gitb:actor id="ServiceMetadataPublisher" name="ServiceMetadataPublisher" role="SIMULATED" />	
 </actors>	
	
 <!-- Declares the variables to store intermediate results (message/document parts, computed values, etc) during test
execution -->	
 <variables>	
 <var name="as2_address" type="string" />	
	
 <!-- Participant Identifier of Sender Access Point (System Under Test). Must be retrieved	
 from SUT representative -->	
 <var name="sender_participant_identifier" type="string" />	
 <!-- Participant Identifier of Receiver Access Point (Simulated) -->	
 <var name="receiver_participant_identifier" type="string" />	
 <!-- Represents the type of document that the recipient is able to handle -->	
 <var name="document_identifier" type="string">	
 <value>urn:oasis:names:specification:ubl:schema:xsd:Invoice-
2::Invoice##urn:www.cenbii.eu:transaction:biitrns010:ver2.0:extended:urn:www.peppol.eu:bis:peppol4a:ver2.0::2.1</val
ue>	
 </var>	
 <!-- Root namespace of the document identifier -->	
 <var name="document_identifier_ns" type="string">	
 <value>urn:oasis:names:specification:ubl:schema:xsd:Invoice-2</value>	
 </var>	
 <!-- The identifier of the process -->	
 <var name="process_identifier" type="string">	
 <value>urn:www.cenbii.eu:profile:bii04:ver2.0</value>	
 </var>	
 <!-- XML local element name of the root-element in the business message -->	
 <var name="business_message_type" type="string">	
 <value>Invoice</value>	

CWA XXXXX:XXXX

112

 </var>	
	
 </variables>	
	
 <!-- Steps to be executed by GITB Testbed -->	
 <steps>	
 <!-- Assign step assigns the result of an interim computation into a variable -->	
 <assign to="$as2_address">concat("https://", $SenderAccessPoint{ReceiverAccessPoint}{network.host}, ":",
$SenderAccessPoint{ReceiverAccessPoint}{network.port})</assign>	
 <assign to="$receiver_participant_identifier"
source="$SenderAccessPoint{ReceiverAccessPoint}{participant.identifier}" />	
 <assign to="$sender_participant_identifier" source="$SenderAccessPoint{participant.identifier}" />	
	
 <!-- BeginTransaction step notifies the GITB Testbed that a transaction will start for the given messaging adapter
(handler) in the next messaging steps -->	
 <btxn from="SenderAccessPoint" to="ServiceMetadataLocator" txnId="t3" handler="SMLMessaging"/>	
 <!-- Receive step receives messages from the SUTs →	
 <!-- Here ServiceMetadataLocator actor simulated by test engine will receive a message from SenderAccessPoint
actor which represents the real SUT-->	
 <receive id="sml_output" desc="Locate SMP" from="SenderAccessPoint" to="ServiceMetadataLocator"
txnId="t3">	
 <config name="dns.domain">B-351cd3bce374194b60c770852a53d0e6.iso6523-actorid-
upis.localhost.</config>	
 </receive>	
 <!-- Receive step sends messages to the SUTs →	
 <!-- Here ServiceMetadataLocator actor simulated by test engine will send a message to SenderAccessPoint actor
which represents the real SUT-->	
 <send desc="Resolve SMP domain" from="ServiceMetadataLocator" to="SenderAccessPoint" txnId="t3">	
 <input name="dns.address" source="$SenderAccessPoint{ServiceMetadataPublisher}{network.host}"/>	
 </send>	
 <!-- EndTransaction notifies test engine that a transaction is finalized and no following messaging steps will refer
this transaction any more -->	
 <etxn txnId="t3"/>	
	
 <btxn from="SenderAccessPoint" to="ServiceMetadataPublisher" txnId="t2" handler="SMPMessaging"/>	
 <receive id="smp_output" desc="Send message to SMP to get Receiver Access Point address"
from="SenderAccessPoint" to="ServiceMetadataPublisher" txnId="t2" />	
 <send id="smp" desc="Send SMP Metadata back" from="ServiceMetadataPublisher"
to="SenderAccessPoint" txnId="t2">	
 <input name="smp_metadata" source="$SMP_Metadata_Template"/>	
 </send>	
 <etxn txnId="t2"/>	
	
 <btxn from="SenderAccessPoint" to="ReceiverAccessPoint" txnId="t1" handler="PeppolAS2Messaging"/>	
 <receive id="as2_output" desc="Send message to Receiver Access Point" from="SenderAccessPoint"
to="ReceiverAccessPoint" txnId="t1" >	
 <config name="document.identifier">urn:oasis:names:specification:ubl:schema:xsd:Invoice-
2::Invoice##urn:www.cenbii.eu:transaction:biitrns010:ver2.0:extended:urn:www.peppol.eu:bis:peppol4a:ver2.0::2.1</co
nfig>	
 <config name="process.identifier">urn:www.cenbii.eu:profile:bii04:ver2.0</config>	
 </receive>	
 <send id="mdn" desc="Send MDN back to Sender Access Point" from="ReceiverAccessPoint"
to="SenderAccessPoint" txnId="t1">	
 <input name="http_headers" source="$as2_output{http_headers}" />	
 </send>	
 <etxn txnId="t1"/>	
	
 <!--Verify step applies a specific validation methodology on a given content. -->	
 <verify handler="XSDValidator" desc="Validate Invoice against UBL 2.1 Invoice Schema">	
 <input name="xmldocument">$as2_output{business_message}</input>	
 <input name="xsddocument" source="$UBL_Invoice_Schema_File"/>	
 </verify>	
 <verify handler="SchematronValidator" desc="Validate Invoice against PEPPOL BII Core">	
 <input name="xmldocument">$as2_output{business_message}</input>	

CWA XXXXX:XXXX

113

 <input name="schematron" source="$PEPPOL_BII_CORE_Invoice_Schematron_File"/>	
 </verify>	
 <verify handler="SchematronValidator" desc="Validate Invoice against PEPPOL BII Rules">	
 <input name="xmldocument">$as2_output{business_message}</input>	
 <input name="schematron" source="$PEPPOL_BII_RULES_Invoice_Schematron_File"/>	
 </verify>	
 <verify handler="SchematronValidator" desc="Validate Standard Business Document Header against
OpenPEPPOL Envelope Specifications">	
 <input name="xmldocument">$as2_output{business_header}</input>	
 <input name="schematron" source="$SBDH_Schematron_File"/>	
 </verify>	
 </steps>	
</testcase>	
	

	

10.2.2 Using a GITB Compliant Validation Service Within A Test Case (here: Validex)

GITB PoC implementation integrates an online validation tool, called Validex, to demonstrate its capabilities
of integrating external testing services according to GITB Service Specifications.

10.2.2.1 How to Integrate

In order to integrate an external content validation tool with GITB Testbed, it must implement the GITB
Content Validation Service Specifications to wrap its functionalities. To realize this integration, a new module,
gitb-validator-validex has been created with the ValidationServiceImpl class that implements the
ValidationService web service interface. With this implementation, Validex becomes accessible through the
GITB Testbed Validation Service. Requests to this service are delivered to Validex and responses are
wrapped with internal test reporting format and returned to tester. 	

The module definition of Validex Validator can be seen below. One difference from the module definitions
provided in gitb-validators module is an additional serviceLocation attribute which denotes the endpoint of
the wrapper validation service. When the test engine utilizes this validator wrapping the functionalities of
Validex, it calls this service which delivers the request to Valdiex, as mentioned before.	 	

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>	
<module xmlns="http://www.gitb.com/core/v1/"	
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	
 id="ValidexValidator" uri="urn:com:gitb:validation:ValidexValidator"	
 xsi:type="ValidationModule" isRemote="true"
serviceLocation="http://localhost:9091/service/ValidationService">	
 <metadata>	
 <name>Validex Validator</name>	
 <version>1.0</version>	
	 	 	 	 	 	 	 	 	 <description>Validex wrapper validation service</description>	
 </metadata>	
 <inputs>	
 <param type="string" use="R" name="name" desc="Name of the document to be validated" />	
 <param type="object" use="R" name="document" desc="XML document to be validated" />	
 </inputs>	
 <outputs>	
 <param name="string" type="name" desc="Name of the document to be validated"/>	
 <param name="string" type="document" desc="XML document to be validated"/>	
 <param name="string" type="reportId" desc="Report id given by the Validex service"/>	
 <param name="string" type="reportLink" desc="Report link to the Validex reportin interface"/>	
 </outputs>	
</module>	

	

CWA XXXXX:XXXX

114

10.2.2.2 Definition of the Test Case

In order to benefit from the external validation tools within a Test Case, it is enough to set the id of the
validator in Verify step. For instance, as it can be seen from the module definition of Validex, the id attribute,
ValidexValidator is set as the validation handler in the below Verify step. 	

<?xml version="1.0" encoding="UTF-8"?>	
<testcase id="PEPPOL-SenderAccessPoint-Invoice-Validex" xmlns="http://www.gitb.com/tdl/v1/"
xmlns:gitb="http://www.gitb.com/core/v1/">	
 <metadata>	
 <gitb:name>PEPPOL-SenderAccessPoint-Invoice-Validex</gitb:name>	
 <gitb:type>CONFORMANCE</gitb:type>	
 <gitb:version>0.1</gitb:version>	
 <gitb:description>The objective of this Test Scenario is to ensure the Sender Access Point (the System
Under	
 Test) can submit a conformant PEPPOL BIS 4A electronic invoice to a Receiver Access Point using the
AS2	
 protocol. Then submitted document is validated by Validex.	
 </gitb:description>	
 </metadata>	
 <namespaces>	
 </namespaces>	
 <imports>	
 </imports>	
 <actors>	
 <gitb:actor id="SenderAccessPoint" name="SenderAccessPoint" role="SUT"/>	
 <gitb:actor id="ReceiverAccessPoint" name="ReceiverAccessPoint" role="SIMULATED">	
 <gitb:endpoint name="as2">	
 <gitb:config name="participant.identifier">0088:12345test</gitb:config>	
 </gitb:endpoint>	
 </gitb:actor>	
 </actors>	
 <variables>	
 </variables>	
 <steps>	
 <btxn from="SenderAccessPoint" to="ReceiverAccessPoint" txnId="t1" handler="PeppolAS2Messaging"/>	
 <receive id="as2_output" desc="Send message to Receiver Access Point" from="SenderAccessPoint"	
 to="ReceiverAccessPoint" txnId="t1">	
 <config name="document.identifier">urn:oasis:names:specification:ubl:schema:xsd:Invoice-
2::Invoice##urn:www.cenbii.eu:transaction:biitrns010:ver2.0:extended:urn:www.peppol.eu:bis:peppol4a:ver2.0
::2.1</config>	
 <config name="process.identifier">urn:www.cenbii.eu:profile:bii04:ver2.0</config>	
 </receive>	
 <send id="mdn" desc="Send MDN back to Sender Access Point" from="ReceiverAccessPoint"
to="SenderAccessPoint"	
 txnId="t1">	
	 	 	 	 <input name="http_headers" source="$as2_output{http_headers}"/>	
 </send>	
 <etxn txnId="t1"/>	
	
 <verify handler="ValidexValidator" desc="Validate Invoice document using the Validex validation service">	
 <input name="document">$as2_output{business_message}</input>	
 <input name="name">"Invoice document"</input>	
 </verify>	
 </steps>	
</testcase>	

	

CWA XXXXX:XXXX

115

11 GITB Compliance

11.1 GITB Compliance Levels

Test Beds can achieve different levels of compliance with the GITB recommendations:

• GITB Framework Compliance implies that a Test Bed provides the specific functional capabilities
required for eBusiness testing (see GITB Phase 1, CWA 16093:2010, Chapter 5.7). It thereby fulfils
certain quality criteria in eBusiness testing and, in other words, we can state that it is “GITB
Friendly”.

• GITB Service Compliance implies that a test service implements one of the GITB Test Service
specifications outlined in this report (see GITB Phase 3, Chapters 8). Based on the functionality of
the test service, Testing Resources can be reused or shared with other “GITB Service Compliant”
service. The service claiming the compliance can either be i) a service consumer reusing the testing
resource or ii) a service provider; sharing the testing resource. When claiming GITB Service
Compliance, the service name and the role should be stated as either of the followings;

o GITB Compliant Content Validation Service Consumer (or Provider)
o GITB Compliant Messaging/Simulation Service Consumer (or Provider)
o GITB Compliant Test bed Service Consumer (or Provider)

• GITB TDL Compliance ensures that test cases written in the GITB Test Description Language

(TDL) can be reused and shared. It can be claimed in the following contexts;
o GITB Compliant TDL Processor – a Test bed has the ability to process the test cases

written in GITB TDL format and execute the corresponding test scenarios accordingly
o GITB Compliant TDL Producer – any Test Bed or software component that produces test

cases in TDL

All levels of compliance are complementary and fulfil different purposes (see Table 11-1) – functional
capabilities for GITB Framework Compliance, service-oriented interoperability for GITB Service Compliance,
and reusing test scenario definitions for GITB TDL Compliance. The criteria to achieve GITB Compliance are
described in the following sections.

Table 11-1: GITB Compliance Levels

Level of
compliance

Description Criteria Added Value for the
Test Bed/Service

GITB
Framework
Compliance

Comply with the
functional
requirements stated
in the GITB Testing
Framework

Identified in GITB Phase 1 - CWA
16093:2010 (Chapter 5.7):

Provide functional capabilities (test
execution & test case model)

Demonstrate the
specific functional
capabilities required for
eBusiness testing.

GITB
Service
Compliance

Share the testing
resources with other
systems in a
standard way
(Service Provider),

OR

Reuse GITB
compliant testing
services within your
system (Service
Consumer).

Identified in GITB Phase 3 (see Chapters 5
to 8):

Either provide one of the service interface
(Chapter 8) as a provider for sharing
Testing Resources or use the service
interface as a consumer of the provided
Testing Resource.

In relation with the service specification
either produce (for service providers), or
consume (for service consumers) Test
Report artifacts complying with the GITB
Test Report format (Chapter 7).

Share or reuse Testing
Resources with other
GITB Service Compliant
systems.

Become part of the
GITB network of Test
Services.

CWA XXXXX:XXXX

116

GITB TDL
Compliance

Test bed’s ability to
process the test
description language
defined in GITB

OR

Ability of producing
test cases in the test
description language
defined in GITB.

Identified in GITB Phase 3 (see Chapter
9):

Be able to process GITB TDL scripts and
execute the testing scenario accordingly
(configurations, messaging, content
validations, etc).

or

Be able to export or produce test cases
written in TDL to share them with others.

Share or reuse test
case definitions among
different testbeds as a
result different domains,
initiatives, projects.

11.2 GITB Framework Compliance

The criteria for achieving GITB Framework Compliance have been elaborated in GITB Phase 1 as
engineering-level requirements (CWA 16093:2010, Chapter 5.7) and have been reviewed and
complemented in the current phase.

A Test Bed can claim to be GITB Framework Compliant if it provides the functional capabilities related to

a. the test case model (FUC-TCM), i.e. it provides the capabilities to represent the test-related
configuration information, procedural information, verification information as well as the test suites
(containing test cases) and test data. – criteria specified in Table 11-211-2,

b. the test execution (FUC-TCE), i.e. it provides capabilities of test preparation and setup, controlling
test steps, message exchange, message pre-/post-processing, validation and recovery, reporting
and B2B system emulation – criteria specified in Table 11-311-3.

Table 11-2: Criteria for GITB Framework Compliance – Test Case Model (FUC-TCM)

FUC-TCM/R01 Capability of representing test configuration information
1) Capability of representing declaration

of messaging protocol to be used
CWA
16093:2010

For each message exchanged in a test case,
the protocol to be used need to be clearly
identified

2) Capability of representing for each
tested actor the type of configuration
parameters that are needed

GITB3 -
Addition

For each tested actor, the list of
configuration parameters that are needed
from the SUT should be identified

FUC-TCM/R02 Capability of representing test procedural information
1) Capability of representing message

to be sent
CWA
16093:2010

2) Capability of representing message
choreography

CWA
16093:2010

3) Capability of representing conditional
expression (test step) for test case

CWA
16093:2010

4) Capability of representing iterative
expression

CWA
16093:2010

5) Capability of representing manual
steps

CWA
16093:2010

FUC-TCM/R03 Capability of representing test verification information
1) Capability of using external

document for verification
CWA
16093:2010

The tool offers the capability of using
external reference material (document,
services, schema....) for verification of
exchanged messages/content

FUC-TCM/R05 Capability of representing test suite (containing test cases)
1) Capability of representing

precedence relationships between
CWA
16093:2010

CWA XXXXX:XXXX

117

test cases
2) Capability of grouping test cases into

a test suite
GITB3 -
Addition

FUC-TCM/R05 Capability of representing test data
1) Capability of representation of user's

defined values
CWA
16093:2010

The tool offers the capability of referencing
data value set for the context of the test

2) Capability of representation of
automatically generated values

CWA
16093:2010

The tool is capable of generating data for
testing purpose

Table 11-3: Criteria for GITB Framework Compliance – Test Execution Model (FUC-TCE)

FUC-TCE/R01 Capability of test preparation and setup
1) Capability of providing the setup

information to SUTs
CWA
16093:2010

Capability of the tools to provide the SUT
operator with the test configuration
paramaters

2) Capability of requesting SUTs
parameters and information

CWA
16093:2010

Capability of the tools to request from the
SUT operator the test configuration
paramaters

3) Capability of test case customisation CWA
16093:2010

Before the execution of the test !

FUC-TCE/R02 Capability of controlling test steps
1) Capability of display of test flow and

test progress
CWA
16093:2010

2) Capability of requesting/storing
user's information

CWA
16093:2010

The user can upload evidences in the tool or
input data

3) Capability of binding user'
information into test

CWA
16093:2010

The use can provide pointers (URL, URI...)
to information external to the test bed

4) Capability of manual execution of test
steps

CWA
16093:2010

FUC-TCE/R03 Capability of message exchange
1) Capability of sending/receiving

message
CWA
16093:2010

The tool is able to send and receive
messages. Removed payload from
description

2) Capability of uploaded/downloading
message

CWA
16093:2010

Manual upload/download of exchanged
messages

3) Capability of capturing message CWA
16093:2010

Automatic capture of exchanged messages
by the test bed

FUC-TCE/R04 Capability of message pre-/post-processing
1) Capability of decomposing messages CWA

16093:2010
The test bed is capable of processing the
messages exchange in the supported
protocols. It is capable of using message
content for subsequent steps

2) Capability of retrieving a value from
message

CWA
16093:2010

3) Capability of generation message
template from schema

CWA
16093:2010

4) Capability of generation of test data
for a specific message template

CWA
16093:2010

5) Capability of message transformation CWA
16093:2010

Add here : for better readability (Binary to
Text, HL7 ER7 to Tree or XML)

FUC-TCE/R05 Capability of validation and recovery
1) Capability of detecting unknown

problems
CWA
16093:2010

Remove unknown. The test execution can
detect errors and report them

2) Capability of employing the existing
validation engines messages

CWA
16093:2010

Capibility of using external validation tools
and display/process their report

3) Capability of recovery from errors CWA
16093:2010

Whenever this is possibile the validation tool
shall continue processing messages analysis
although an error has been identified. Test

CWA XXXXX:XXXX

118

case execution should not abort up on error
discovery when this does not impact the test
case

FUC-TCE/R06 Capability of reporting
1) Capability of display of error location CWA

16093:2010
This section is about the reporting of logged
evidence to the testers

2) Capability of display of test log
information

CWA
16093:2010

3) Capability of display of detail test
result

CWA
16093:2010

FUC-TCE/R07 Capability of B2B system emulation
1) Capability of emulation of an arbitrary

business unit
CWA
16093:2010

The test bed offers the capability of emulate
a business unit relevant to the tested
context. Simulation tool

11.3 GITB Service Compliance

The added value of GITB Service Compliance is that it provides a standard way to share and reuse some
common Testing Resources (functionalities) with other GITB Service Compliant systems.

According to the functionality of the Testing Resource, the following compliance statements are possible;

1. GITB Compliant Content Validation Service Provider or Consumer:

A document validation software tool or service can claim to be a GITB Compliant Content Validation
Service Provider if

a. it conforms to the GITB Document Validation Service Specification for providing the service and
performs the intended content validations as a result of the validation operation calls.

b. it produces test reports conformant with GITB Test Report Format as a result of the validation
operations defined in the service specification.

A software system (Test bed or any software) can claim to be a GITB Compliant Content Validation
Service Consumer if

a. it is able to call any GITB Compliant Content Validation Service by conforming the
specification.

b. it consumes the test reports as a result of the validation operation.

2. GITB Compliant Messaging (Simulator) Service Provider or Consumer:

A software system or service can claim to be a GITB Compliant Messaging (Simulator) Service
Provider if

a. it conforms to the GITB Messaging (Simulator) Service Specification and perform the intended
communications with or between SUTs as a result of the operations defined in the specification.

b. it produces the test reports conformant with GITB Test Report Format as a result of those
messaging operations.

A software system (Test bed or any software) can claim to be a GITB Compliant Messaging
(Simulator) Service Consumer if

a. it implements the callback operations defined in GITB Messaging (Simulator) Service
Specification and is able to call the service operations by conforming the specification.

b. it consumes the test reports resulted of the message exchange and related validation
operations.

CWA XXXXX:XXXX

119

3. GITB Compliant Test Bed Service Provider or Consumer:

A Test Bed service can claim to be a GITB Compliant Test Bed Service Provider if

a. it conforms to the GITB Test Bed Service Specification and performs the intended testing
process remotely based on the operation calls on the service.

b. it can map internal testing process definition to the GITB Test Presentation Language (TPL)
format and return it as a result of corresponding operation defined in the specification.

c. it produces the test reports conformant with GITB Test Report Format as a result of the
execution of a test scenario.

A software system (Test bed or any software) can claim to be GITB Compliant Test Bed Service
Consumer if

a. It is able to interact with the GITB Compliant Test bed services and make the necessary
operation calls to make the remote service preform the intended testing process.

b. It can render the testing process definition in GITB Test Presentation Language (TPL) format
and visualize it for system users (SUT administrators)

c. It implements the callback operations defined in GITB Test bed Service Specification to receive
the test step reports and status updates.

d. It consumes the resulting test reports conformant with GITB Test Report Format and visualize
the results to its users.

Criteria to become GITB Service Compliant are summarized in Table 11-411-4:

Table 11-4: Criteria for GITB Service Compliance

Element Role Methodology Related GITB
Specifications

GITB Content
Validation Service
Compliance

Service
Provider

Adapt your existing implementation to
expose your own Test Service logic
through the GITB Content Validation
Service

GITB Content Validation
Service Specification (see
section 9.1)

GITB Test Report Format
(see section 8) Service

Consumer
Implement a client that can make calls for
the service to make it validate a given
content remotely and receive the reports.

GITB
Messaging/Simulator
Service Compliance

Service
Provider

Adapt your existing implementation to
expose your own simulation logic through
the Messaging/Simulator service.

GITB
Messaging/Simulator
Service Specification (see
section 9.2)

GITB Test Report Format
(see section 8)

Service
Consumer

Implement a client that implements the
callback function as defined in the
specification and can make the necessary
operation calls on the service to drive it for
intended messaging operations with
SUTs.

GITB Test Bed
Service Compliance

Service
Provider

Adapt your existing implementation to
expose your own Test Bed logic through
the Testbed Service to enable remote
programmatic execution of test scenarios.

GITB Test Bed Service
Specification (see section
9.3)

GITB Test Report Format
(see section 8)

GITB Test Presentation
Language (see section 7)

Service
Consumer

Implement a client that implements the
callback function as defined in the
specification and can make the necessary
operation calls on the service to drive it to
execute the test scenarios
programmatically.

CWA XXXXX:XXXX

120

The implementers of GITB service specifications are free to use their own approach, software architecture,
or technology to implement their tools. The only requirement is to conform to the web service specifications
to serve their functionalities to others in a common way.

The main benefit of being GITB service compliant is that Test Beds can cooperate in a network and share
their Testing Capabilities and Testing Resources with other GITB-service compliant Test Beds. Their own
Testing Capabilities will then be usable (as add-ons) by other GITB-service compliant Test Beds, as they
make use of standardized plug-in interfaces and exhibit the expected level of standardization for their Test
Artifacts.

11.4 GITB TDL Compliance

The following compliance statements are possible:

A Test Bed can claim to be GITB Compliant TDL Processor if it is able to process the test scenario
definitions written in TDL and execute the test scenario by performing the intented operations accordingly as
described in detail in GITB TDL Specification. We assume that the complete package of the required test
artifacts are available to the Test Bed. Furthermore, we assume that GITB Compliant services referenced in
the test case description are available and in operation.

A Test Bed or any software (e.x. a TDL editor) can claim to be GITB Compliant TDL Producer if it can
export or produce test cases in TDL format.

Even the partial compliance to TDL is possible, that is the partial support of TDL commands (like looping,
parallel executions, etc) for this CWS it is stated as out of scope to decrease the complexity.

CWA XXXXX:XXXX

121

Part III: GITB Test Registry and Repository (TRR) Specifications and Prototype
The GITB Architecture foresees a Test Registry and Repository (TRR) as access point for any published
Testing Resource. The Testing Resource could include not only Test Artifacts like Test Cases, script rules,
and Test Suites, but also test components with their APIs and interfaces.

Part III of this report summarizes GITB Phase 3 outcomes related to the TRR.

• TRR specifications in the form of an ADMS profile (Section 12).
• The prototype implementation based on Joinup (Section 13).

This part is relevant for testing experts and architects that are interested in registries and repositories for
managing, archiving and sharing Testing Resources.

12 GITB Test Registry and Repository (TRR) Specifications
12.1 Role of TRR in the GITB Architecture

In the GITB Architecture, the Test Registry and Repository (TRR) is aimed at supporting the Test Bed for
managing, archiving and sharing distributed Testing Resources in a central location, accessible by other
parties. The TRR can also be used as a long-term archival platform for Testing Resources. The TRR is part
of the GITB testing infrastructure, however, it is not considered as part of a Test Bed, as it is a software
component that is independently deployed, managed and accessed. The TRR is accessible through a
graphical user interface called the TRR Client or through a Web service interface.

Figure 12-1: TRR in the GITB Architecture

When it comes to managing and sharing resources in a distributed environment, a distinction is typically
made between the concept of a registry, that lists items with pointers to find the items, and the concept of a
repository, that stores the actual items. The TRR can fulfil both purposes.

The main capability offered by the TRR is the search functionality that allow users to find information about
and locate existing Testing Resources and Test Beds. The TRR features are described in details in section
12.5.

CWA XXXXX:XXXX

122

12.2 User Classes and Roles

The following table summarizes the user and user classes of Test Beds, by referring to the roles defined in
the GITB Testing Framework (see section 4.3).

Table 12-1: List of the Test Bed Actors

User Classes Roles in the GITB Testing
Framework (see 4.3.)

Short Description

Test Experts: Provider
of test beds or testing
services

Test Designer Creator and editor of Testing Resources

Test Manager Executor or execution facilitator of Test Suites

Test Bed Provider Operator of a Test Bed

Test Participants:
Owner or operator of a
SUT

End User All organizations – from private and public
sectors – which implement eBusiness scenarios

Industry Consortia and
Formal SDOs

 Communities of end-users, public authorities
and other interested parties

Software Vendors Vendors of enterprise applications that intend to
be compliant with existing eBusiness
Specifications

Testing Laboratories Laboratories specialized in increasing efficiency
and reliability of interoperable implementation of
standards

As the TRR is part of the GITB testing infrastructure, it is expected that the Test Bed users would also be
users of the TRR. However, as the TRR is an independent system, new user roles or actors shall be
introduced. The suggested TRR user roles are listed in the following table. Test Bed Users and business
users as previously defined could have any of the roles specific to the GITB Compliant TRR platform.

Table 12-2: List of the TRR Actors

TRR User Roles Short Description

TRR Administrator Administrator of the TRR platform

Workspace Administrator Workspace User who has the administrator rights on a workspace,
a private place for a set of users, where users can administrate
their folders and Testing Resources

Workspace User Authenticated User invited to participate to a workspace by a
workspace administrator

Authenticated User Anonymous User who has created an user account on the platform
and has logged in

Anonymous User User who is not logged in the platform

CWA XXXXX:XXXX

123

12.3 Basic Concepts

12.3.1 Testing Resources Managed by the TRR

Testing Resource is a generic term introduced in GITB that designates any part of a Test Bed (Test Artifact,
Test Service interface, core or plug-in Test Bed Component), or a combination of these.

The Testing Resources managed by the TRR are the following resources:

• Test Artifacts like Test Cases, script rules, and Test Suites,
• Test Components (also known as Testing Capability Components) with their APIs and interfaces.

The following table lists the Testing Resources defined in the GITB Testing Framework (see section 4) which
are managed by the TRR.

Table 12-3: Different Type of Testing Resources managed by the TRR

Primary
concepts

Type Short description

Test
Artifact

Test
Logic

Artifact

Document
Assertion

a package of artifacts used to validate a Business Document, typically
including one or more of the following: a schema (XML), consistency
rules, codelists, etc. These artifacts are generally machine-
processable

Test Case an executable unit of verification and/or of interaction with an SUT,
corresponding to a particular testing requirement, as identified in an
eBusiness Specification

Test Suite defines a workflow of Test Case executions and/or Document
Validator executions

Test Capability
Component

Messaging
Adapter

specialized for messaging protocol stacks such as ebXML
Messaging, Web Services with SOAP or REST, AS2/AS4, and the
underlying transports: SMTP, HTTP, etc.

Document
Validator

responsible for validating the content of the documents retrieved from
the Messaging Adapters in terms of both structure and semantic such
as EDI: ANSI, EDIFACT, XML

12.3.2 Metadata

As registry and repository, the TRR can contain Testing Resources that are either actual Test Artifacts, or
references to a Test Artifact contained in another system (e.g. a repository, a Test Bed), or a reference to an
actual Test Bed.

To facilitate the management, discovery and identification of the Testing Resource, the data stored or
referenced within the TRR need to be associated with metadata.

The National Information Standards Organization25 defines metadata as the “structured information that
describes, explains, locates, or otherwise makes it easier to retrieve, use, or manage an information
resource. Metadata is often called data about data or information about information”. Metadata provides data
or information that enables to make sense of data, concepts and real-world entities. Metadata is a particular

25 http://www.niso.org/publications/press/UnderstandingMetadata.pdf

CWA XXXXX:XXXX

124

kind of information, associated to Test Artifacts and to Test Beds. For example, title, author, creation date,
name are default metadata associated to the Testing Resources.

For providing proper metadata to the Testing Resources, the good practice26 is to reuse existing
vocabularies developed by standards and specifications. For example, the following general purpose
standards and specification can be reused: Dublin Core for published material (text, images), FOAF or ISA
Core Vocabularies27 for people and organisations, SKOS for concept collections. These standards and
specifications are available as RDF datasets.

The use of RDF to structure, organize and model metadata is aligned with the actual ways to model and
present data and follows the Linked Data28 principles.

12.4 The Asset Description Metadata Schema application profile for TRR

The Asset Description Metadata Schema (ADMS)29 was originally drafted to describe semantic
interoperability assets. An ADMS application profile is a specification for data interchange that adds
additional constraints to the original ADMS, so the scope of the ADMS is extended or restricted for specific
purpose by modifying required terms, classes and properties, etc.

A specific metadata schema has been developed for identifying and describing the Testing Resources
managed by the TRR by reusing and combining existing terms from different standards and specifications.
The metadata schema for Testing Resources is an ADMS application profile called ADMS.TRR.

Table 12-4: The primary concepts introduced by ADMS

Primary
concept Definition Concept of GITB

Asset
Repository

A system or service that provides facilities for storage
and maintenance of descriptions of Assets and Asset
Distributions, and functionality that allows users to
search and access these descriptions.

The concept of TRR

Asset An abstract entity that reflects the intellectual content of
the asset and represents those characteristics of the
asset that are independent of its physical embodiment.

The concept of an abstract
design or model of a Testing
Resource

Asset
Distribution

A particular physical embodiment of an Asset. A
Distribution is typically a downloadable computer file
(but in principle it could also be a paper document or
API response) that implements the intellectual content of
an Asset.

The concept of a concrete
representation of a Testing
Resource

In the following sections, the developed ADMS application profile is presented, and in particular we:

26 This is what we see from the European initiatives about software reuse and promotion of the Linked Open Data:
https://joinup.ec.europa.eu/community/ods/description

27 For example: http://www.w3.org/TR/vocab-regorg/

28 http://linkeddata.org/

29 http://www.w3.org/TR/vocab-adms/

CWA XXXXX:XXXX

125

• introduce a namespace for Testing Resource (section12.4.2),
• list the classes to reuse and the ones to introduce (section 12.4.3),
• for each class, list its properties and their scope: mandatory, recommended, optional (section 0),
• for some properties, point to an existing vocabulary (e.g. Eurovoc domains category) or specify a

new vocabulary (paragraph 12.4.5).

Controlled vocabularies, which are predefined lists of values to be used as values for a specific property in
the metadata schema, are used in the metadata schema for Testing Resource. Common controlled
vocabularies make metadata understandable across systems.

12.4.1 Logical view of the metadata

Figure 12-2: The TRR Metadata Schema

The ADMS.TRR application profile extends the existing ADMS specification30. Also, the extended ADMS
specification31 provided within the Joinup platform is the reference of this application profile. It means that
some of the classes presented here have been reutilized as-is from the ADMS specification.

12.4.2 Namespaces

In the following sections, classes and properties are grouped under headings ‘mandatory’, ‘recommended’
and ‘optional’. These terms have the following meaning.

• Mandatory class: a receiver of data MUST be able to process information about instances of the
class; a sender of data MUST provide information about instances of the class.

30 http://www.w3.org/TR/vocab-adms/

31 https://joinup.ec.europa.eu/catalogue/distribution/Extended_ADMS_Specification_v100zip

-dcterms:title
-dcterms:description
-dcterms:issued
-dcterms:modified
-dcat:keyword
-owl:versionInfo

adms:Asset

admstrr:TestCapabilityComponent

admstrr:MessagingAdapter admstrr:DocumentValidator

admstrr:TestSuite admstrr:TestCase admstrr:DocumentAssertionSet

admstrr:PayloadFile

admstrr:TestLogicArtifact

1

-admstrr:testCase

* 1

-admstrr:documentAssertionSet

*
1

-admstr:payloadFile

*

-dcterms:issued
-dcterms:modified
-dcterms:title
-dcat:accessURL
-dcat:downloadURL

adms:AssetDistribution

1

-dcat:distribution

*

-dcterms:title
-dcterms:issued
-dcterms:modified
-dcterms:description
-dcat:accessURL
-adms:supportedSchema

adms:AssetRepository

1

-dcat:dataset*

skos:Concept
1

-admstrr:businessProcess

*

1

-dcterms:type*

1

-adms:representationTechnique

*

1

-admstr:payloadFile

*

adms:Identifier

1

-adms:identifier

*

1

-admstrr:actor

*

1

-admstrr:productType

*

admstrr:TestBed

foaf:Agent

1

-dcterms:publisher

*

1

-dcterms:hasPart

*

1

-admstrr:standardizationLevel *

1

-admstrr:uses

*

admstrr:TestAsset

Existing ADMS classes

Extension Class1

Class1

CWA XXXXX:XXXX

126

• Recommended class: a receiver MUST be able to process information about instances of the class;
a sender SHOULD provide the information if it is available.

• Optional class: a receiver MUST be able to process information about instances of the class; a
sender MAY provide the information but is not obliged to do so.

• Mandatory property: a receiver MUST be able to process the information for that property; a sender
MUST provide the information for that property.

• Recommended property: a receiver MUST be able to process the information for that property; a
sender SHOULD provide the information for that property if it is available.

• Optional property: a receiver must be able to process the information for that property; a sender
MAY provide the information for that property but is not obliged to do so.

The table below lists the namespace prefixes that are used in the following sections with the corresponding
namespaces URIs.

Table 12-5: Namespaces of the ADMS application profile

Namespace Prefix Namespace URI

adms http://www.w3.org/ns/adms#

admstrr http://purl.org/adms/trr/

dcat http://www.w3.org/ns/dcat#

dcterms http://purl.org/dc/terms/

doap http://usefulinc.com/ns/doap#

foaf http://xmlns.com/foaf/0.1/

qb http://purl.org/linked-data/cube#

rad http://www.w3.org/ns/radion#

rdfs http://www.w3.org/2000/01/rdf-schema#

schema http://schema.org/

skos http://www.w3.org/2004/02/skos/core#

spdx http://spdx.org/rdf/terms#

swid http://standards.iso.org/iso/19770/-2/2009/

trove http://sourceforge.net/api/trove/index/rdf#

v http://www.w3.org/2006/vcard/ns#

wdrs http://www.w3.org/2007/05/powder-s#

xsd http://www.w3.org/2001/XMLSchema#

CWA XXXXX:XXXX

127

12.4.3 Application Profile Classes

These classes include the Test Bed and Test Suite classes (at least one of them is mandatory depending of
the scope) and all classes that appear as the range of mandatory properties in the description of instances of
these two classes.

Table 12-6: Mandatory Classes

Class name Usage note for the Application Profile URI

Asset

Abstract entity that reflects the intellectual content of an
Asset and represents those characteristics that are
independent of its physical embodiment. This abstract entity
combines the FRBR32 entities work (a distinct intellectual or
artistic creation) and expression (the intellectual or artistic
realization of a work).

The physical embodiment of an Asset is called an Asset
Distribution. A particular Asset may have zero or more
Distributions.

adms:Asset

Test Bed An actual test execution environment for Test Suites or Test
Services. Contains Testing Capabilities and various Test
Suites or Document Assertions.

admstrr:TestBed

Test Suite Defines a workflow of Test Case executions and/or
Document Validator executions.

The Test Suite class is a subclass of Asset class.

admstrr:TestSuite

Publisher
Organisation making information available. This can be an
organisation that has customized a particular standard to
answer its specific business needs.

foaf:Agent

Identifier Identifier of an Asset. adms:Identifier

Specification
Type

The type of specification the Test Bed or the Testing
Resource refers to, using a controlled vocabulary (see
section 12.4.5).

skos:Concept

The following classes are classified as Recommended to allow the user to give additional details about the
content of a Test Suite or a Test Bed.

Table 12-7: Recommended Classes

Class name Usage note for the Application Profile URI

Asset
Distribution

Particular physical embodiment of an Asset, which is an
example of the FRBR entity manifestation (the physical
embodiment of an expression of a work).

A Distribution is typically a downloadable computer file (but in
principle it could also be a paper document or API response)

adms:AssetDistribution

32 Cataloguing Section. Functional Requirements for Bibliographic Records, section 3. Entities.

http://archive.ifla.org/VII/s13/frbr/frbr_current3.htm

CWA XXXXX:XXXX

128

that implements the intellectual content of an Asset.

A particular Distribution is associated with one and only one
Asset, while all Distributions of an Asset share the same
intellectual content in different physical formats.

Document
AssertionSet

A package of artifacts used to validate a Business Document,
typically including one or more of the following: a schema
(XML), consistency rules, codelists, etc. These artifacts are
generally machine-processable.

The Document Assertion Set class is a subclass of Asset
class.

admstrr:DocumentAsserti
onSet

Test Case An executable unit of verification and/or of interaction with an
SUT, corresponding to a particular testing requirement, as
identified in an eBusiness Specification.

The Test Case class is a subclass of Asset class.

admstrr:TestCase

Payload File represents a concrete document or part of it

The Payload File class is a subclass of Asset Distribution
class.

admstrr:PayloadFile

Messaging
Adapter

specialized for messaging protocol stacks such as ebXML
Messaging, Web Services with SOAP or REST, AS2/AS4,
and the underlying transports: SMTP, HTTP, etc.

The Messaging Adapter class is a subclass of Asset class.

admstrr:MessagingAdapt
er

Document
Validator

responsible for validating the content of the documents
retrieved from the Messaging Adapters in terms of both
structure and semantic such as EDI: ANSI, EDIFACT, XML.

The Document Validator class is a subclass of Asset class.

admstrr:DocumentValidat
or

Standardizat
ion Level

Level of standardization of the Test Artifacts (e.g. Level 1,
Level 2, Level 3) of an Asset, using a controlled vocabulary
(see section 12.4.5).

skos:Concept

Table 12-8: Optional Classes

Class name Usage note for the Application Profile URI

Asset
Repository

System or service that provides facilities for storage and
maintenance of descriptions of Assets and Asset
Distributions, and functionality that allows users to search
and access these descriptions. An Asset Repository will
typically contain descriptions of several Assets and related
Asset Distributions.

adms:AssetRepository

Representati
on
Technique

Machine-readable language in which a Distribution is
expressed, using a controlled vocabulary (see section
12.4.5).

skos:Concept

CWA XXXXX:XXXX

129

12.4.4 Application Profile Properties per Class

12.4.4.1 Asset

Table 12-9: Mandatory Properties

Property Range Usage note Card
.

GITB Concept

adms:identifier adms:Identifier identifier for the Asset 0..n artifactId

dcterms:title rdfs:Literal name of the Asset 1..n artifactName

dcterms:type skos:Concept type of the Asset, using a
controlled vocabulary (see
section 12.4.5)

1..n

Table 12-10: Recommended Properties

Property Range Usage note Card
.

GITB Concept

owl:versionInfo rdfs:Literal version number or other
designation of the Asset 0..n version

dcterms:publisher foaf:Agent organisation making the Asset
available

1..n authors

dcterms:description rdfs:Literal descriptive text for the Asset 1..n description

dcterms:spatial dct:Location

geographic region or jurisdiction
to which the Asset applies, using
a controlled vocabulary (see
section 12.4.5)

0..n

dcat:distribution adms:AssetDistr
ibution

implementation of the Asset in a
particular format 0..n

Table 11-12-11: Optional Properties

Property Range Usage note Card
.

GITB Concept

dcterms:issued rdfs:Literal typed
as xsd:dateTime

date of formal issuance of this
version of the Asset 0..1 origDate

dcterms:modified rdfs:Literal typed
as xsd:dateTime date of latest update of Asset 1..1 modifDate

dcat:keyword rdfs:Literal word of phrase to describe the
Asset 0..n keywords

CWA XXXXX:XXXX

130

12.4.4.2 Asset Distribution

Table 12-12: Mandatory Properties

Property Range Usage note Card
.

GITB Concept

dcat:accessURL rdfs:Resource URL of the Distribution 1..n

Table 12-13: Recommended Properties

Property Range Usage note Card
.

GITB Concept

dcat:downloadURL rdfs:Resource direct link to a downloadable file
in a given format 0..n

dcat:mediaType dct:FileFormat
media type of the Distribution as
defined by IANA33, using a
controlled vocabulary

0..1

dcterms:license dct:LicenseDocu
ment

conditions or restrictions for (re-)
use of the Distribution 0..1

adms:representation
Technique skos:Concept

language in which the
Distribution is expressed, using
a controlled vocabulary (see
section 12.4.5)

Note: this is different from the file
format, e.g. a ZIP file (file format)
could contain an XML schema
(representation technique)

0..1

Eg: XSD,
DICOM, EDI
messages

X12, EDIFACT,
ODETTE, VDA

Rule script file:
Schematron,
JESS, XPATH

Optional properties

See document about the extended ADMS specification for the exhaustive list of optional properties.

Asset Repository

See document about the extended ADMS specification for the exhaustive list of optional properties.

Test Asset

The Test Asset class is an abstract subclass of the Asset class and therefore inherits all the latter's
properties and relationships.

Table 12-14: Recommended Properties

Property Range Usage note Card
.

GITB Concept

33 IANA (Internet Assigned Numbers Authority). MIME Media Types. http://www.iana.org/assignments/media-types

CWA XXXXX:XXXX

131

Property Range Usage note Card
.

GITB Concept

admstrr:actor skos:Concept The actor or business process
role associated to this Asset 0..n

admstrr:businessPro
cess skos:Concept

The business process
associated to this Asset

The type of process that
provides a way to
unambiguously identify the
business activity to which the
Asset is associated

0..n

admstrr:productType skos:Concept The type of product associated
with this Asset 0..n

12.4.4.3 Test Bed

The Test Bed class is a subclass of the Asset class and therefore inherits all the latter's properties and
relationships. The expected properties for Test Bed are: identifier, title, publisher and landingPage.

12.4.4.4 Test Capability Component

The Test Capability Component class is an abstract subclass of the Test Asset class and therefore inherits
all the latter's properties and relationships.

The Messaging Adapter and Document Validator classes are subclasses of the Test Capability Component
class.

12.4.4.5 Test Logic Artifact

The Test Logic Artifact class is an abstract subclass of the Test Asset class and therefore inherits all the
latter's properties and relationships.

The Test Suite, Test Case and Document Assertion Set classes are subclasses of the Test Logic Artifact
class.

Table 12-15: Recommended Properties

Property Range Usage note Card.

admstrr:standardizationLe
vel skos:Concept The level of standardization of the Test

Artifacts 0..1

12.4.4.6 Test Suite

The Test Suite class is a subclass of the Test Logic Artifact class and therefore inherits all the latter's
properties and relationships.

Table 11-12-16: Recommended properties

Property Range Usage note Card.

CWA XXXXX:XXXX

132

Property Range Usage note Card.

admstrr:testCase admstrr:TestCase The associated Test Case 0..n

12.4.4.7 Test Case

The Test Case class is a subclass of the Test Logic Artifact class and therefore inherits all the latter's
properties and relationships.

Table 11-12-17: Recommended Properties

Property Range Usage note Card.

admstrr:documentAssertionS
et

admstrr:Document
AssertionSet The associated Document Assertion Set 0..n

admstrr:payloadFile admstrr:PayloadFi
le The associated Payload File 0..n

admstrr:uses admstrr:TestCapa
bilityComponent The associated Test Capability Component 0..n

Optional Properties

12.4.4.8 Payload File

The Payload File class is a subclass of the Asset Distribution class and therefore inherits all the latter's
properties and relationships.

12.4.4.9 Messaging Adapter

The Messaging Adapter class is a subclass of the Test Capability Component class and therefore inherits all
the latter's properties and relationships.

12.4.4.10 Document Validator

The Document Validator class is a subclass of the Test Capability Component class and therefore inherits all
the latter's properties and relationships.

12.4.4.11 Specification Type

12.4.4.12 Identifier

Table 12-18: Mandatory Properties

Property Range Usage note Card.

skos:notation rdfs:Literal with
datatype reflecting
the identifier
scheme

character string for the identifier 1..1

CWA XXXXX:XXXX

133

12.4.4.13 Publisher

Table 12-19: Mandatory Properties

Property Range Usage note Card.

dct:type skos:Concept
type of the Publisher, using a
controlled vocabulary (see section
12.4.5)

0..n

12.4.4.14 Standardization Level

Table 12-20: Mandatory Properties

Property Range Usage note Card.

rdfs:label rdfs:Literal label for the Standardization Level 0..1

12.4.4.15 Representation Technique

Table 12-21: Recommended Properties

Property Range Usage note Card.

skos:notation rdfs:Literal label for the Representation
Technique

0..n

12.4.5 Controlled Vocabularies to be Used

Property URI used for
class

Vocabulary Vocabulary URI

dcterms:type Asset http://purl.org/adms/trr/
specificationtype/

adms:representation
Technique

Asset
Distribution

ADMS Representation
Technique Vocabulary

http://purl.org/adms/trr/
representationtype/

admstrr:businessProcess Asset ADMS.TRR Business Process
Vocabulary

Based on the UNCEFACT
Catalog of Common Business
Process

http://www.ebxml.org/s
pecs/bpPROC.pdf -
needs to be enriched
for each domain not
covered

CWA XXXXX:XXXX

134

Property URI used for
class

Vocabulary Vocabulary URI

admstrr:businessProcessRole Asset ADMS.TRR Business Process
Role Vocabulary

Based on the UNCEFACT
Catalog of Common Business
Process

http://www.ebxml.org/s
pecs/bpPROC.pdf -
needs to be enriched
for each domain not
covered

admstrr:productType Asset Common Procurement
Vocabulary (CPV)

http://eur-
lex.europa.eu/legal-
content/EN/ALL/?uri=C
ELEX:32008R0213

admstrr:standardizationLevel Test Logic
Artifact

ADMS.TRR Standardization
Level Vocabulary

http://purl.org/adms/trr/
standardizationLevel

dct:type Publisher ADMS Publisher Type
vocabulary

http://purl.org/adms/pu
blishertype/

dct:spatial Asset, Asset
Repository

MDR Countries Named
Authority List34, MDR Places
Named Authority List35

http://publications.euro
pa.eu/resource/authori
ty/country,
http://publications.euro
pa.eu/resource/authori
ty/place/

34 Publications Office of the EU. Metadata Registry. Authorities. Countries.
http://publications.europa.eu/mdr/authority/country/

35 Publications Office of the EU. Metadata Registry. Authorities. Places.
http://publications.europa.eu/mdr/authority/place/

CWA XXXXX:XXXX

135

12.4.5.1 Specification Type of Asset

Code URI - Definition

HL7 URI: http://purl.org/adms/trr/HL7
Definition: see ·
Source: CWA 16408:2012
Related terms: IHE

WS-I-BP2.0 URI: http://purl.org/adms/trr/WS-I-BP2.0
Definition: see ·
Source: CWA 16408:2012
Related terms:

Autogration

MOSS

ePRIOR

eSENS

OpenPEPPOL

12.4.5.2 Representation Type of Asset Distribution

Based on the Representation technique of ADMS (http://purl.org/adms/representationtechnique/).

Code URI - Definition

Schematron Schematron

JESS JESS

XPATH XPATH

DICOM DICOM

X12 X12

EDIFACT EDIFACT

ODETTE ODETTE

VDA VDA

HumanLanguage Human Language

Diagram Diagram

UML Unified Modelling Language

XMLSchema XML Schema

SKOS Simple Knowledge Organization System

RDFSchema Resource Description Framework Schema

CWA XXXXX:XXXX

136

Code URI - Definition

Genericode genericode

IDEF Integration Definition

BPMN Business Process Modeling Notation

Archimate Archimate

SBVR Semantics of Business Vocabulary and Rules

DTD Document Type Definition

OWL Web Ontology Language Full/DL/Lite

SPARQL SPARQL Query Language for RDF

SPIN SPARQL Inference Notation

WSDL Web Service Description Language

WSMO Web Service Modelling Ontology

KIF Knowledge Interchange Format

Prolog Prolog

Datalog Datalog

RuleML Rule Markup Langauge

RIF Rule Interchange Format

SWRL Semantic Web Rule Language

TopicMaps Topic Maps

CommonLogic Common logic

RelaxNG Relax NG

12.4.5.3 Standardization Level of Test Logic Artifact

Extracted from CWA_16408.

Code URI - Definition

Level 1 Standardization of a general wrapper or header to the artifact (meta-data
standardization).

Level 2 Level 1 plus standardization of external references or interfaces to other
artifacts.

Level 3 Level 1 plus Level 2 plus whole content standardization (e.g. detailed XML
schema reflecting the entire structure of the artifact).

CWA XXXXX:XXXX

137

12.5 Features

12.5.1 Overview

The TRR features are similar to the features of a Registry and a Repository, where storage, retrieval and
search are the main features. Figure 12-312-3 shows the interactions between users and the GITB compliant
TRR. The features of the TRR are:

• the workspace and folders management,
• the Testing Resources management,
• the bulletin board,
• the Testing Resources search,
• the general administration.

Users need to be able to access features both through a graphical user interface and through a Web service
interface. Section 12.7 gives more detail about how users interact with the TRR features.

Figure 12-3: Use Case Diagrams of the TRR

CWA XXXXX:XXXX

138

12.5.2 Concepts

The following table introduces the concepts used to describe the features of the TRR.

Table 12-22: TRR Concepts

Concept Description Optional

Workspace A workspace is the private place for a set of users, where
users can administrate their folders and Testing Resources.

This is optional.

Some Testing
Resources and
information about
Test Beds require
confidentiality, while
others are publically
available.

Folder Testing Resources are organized in folders. It is possible to
create a folder tree to organize and store Testing Resources.
An archive is a top-level folder.

Testing
Resource

This is the content managed by the TRR introduced in section
12.3.1.

Bulletin board The bulletin board is a public place in the TRR to share
announcements and comments on them.

12.5.3 Search Testing Resources

This is about searching among the existing Testing Resources.

Actors All user

Pre condition None

Priority High

Requirements

REQ-1. Perform a free text search: the user enters a plain text
REQ-2. Perform a search on meta-data fields: the user enters some values for specific meta-data fields

to refine the scope of the search
REQ-3. Query the system: the user specifies a query in a formal language (e.g. SQL, SPARQL or

others)
REQ-4. Download the Testing Resources: the user performs a search (free text, on meta-data or

through a query) and can download Testing Resources associated with the results of the search
REQ-5. Access the Testing Resources or Test Bed: the user accesses a Test Bed or a Testing

Resource stored in a remote system, and referenced within the TRR.

12.5.3.1 Typical searches

• Which testing resources are available for a specific context and a specific testing purpose?

CWA XXXXX:XXXX

139

o Testing resources = as defined
o Context = Industry A, Country B, eBusiness specification C, role D (an actor in the

eBusiness specification)
o Testing purpose = validation or simulation

• Which test beds / test providers have expertise in a particular context?
o Context = Industry A, Country B, eBusiness specification C, role D (an actor in the

eBusiness specification)
• Which testing resources are available for different layers of eBusiness specifications/standards?

o messaging
o business documents
o message choreography
o profile

12.5.3.2 Examples of search queries and their answer

This section gives examples of business queries and instantiations of the TRR metadata schema that
answer these queries. The examples are expressed in RDF/Turtle.

The header of the following examples contains the required namespaces:

@prefix : <http://example.com/data#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix adms: <http://www.w3.org/ns/adms#> .
@prefix admstrr: <http://purl.org/adms/trr/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dcat: <http://www.w3.org/ns/dcat#> .

• What are the simulators that this Test Bed is providing?

Shows all instances of class MessagingAdapter linked to the specified Test Bed (dcterms:hasPart).

:hl7TestBed1 a admstrr:TestBed ;
 dct:title "HL7 Gazelle" ;
 dct:hasPart :hl7Simulator1 ;
 dct:hasPart :hl7Simulator2 ;
 dct:hasPart :hl7Validator1 ;
 dct:hasPart :hl7TestSuite1 .

:hl7Simulator1 a admstrr:MessagingAdapter ;
 dct:title "Patient Demographics Query simulator" ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientDemographicSupplier> ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientDemographicConsumer> .

:hl7Simulator2 a admstrr:MessagingAdapter ;
 dct:title "PIX Identity Cross-Reference Manager" ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientIdentitySource> .

• Which validation services are available for the particular eBusiness specification/standard?

Show all instances of class DocumentValidator linked to the specified eBusiness specification/standard
(dcterms:type).

:hl7Validator1 a admstrr:DocumentValidator ;
 dct:title "Patient Demographics Query validator" ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientIdentitySource> ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientDemographicConsumer> ;
 dct:type <http://purl.org/adms/trr/specificationtype/HL7> .

CWA XXXXX:XXXX

140

:hl7Validator2 a admstrr:DocumentValidator ;
 dct:title "GazelleHL7v2Validator External Validation Service" ;
 dct:type <http://purl.org/adms/trr/specificationtype/HL7> .

• Which Test Beds support me in testing a particular eBusiness specification / standard?

List all the Test Beds that contain (dcterms:hasPart) Asset which specification type (dcterms:type) is equal to
a particular standard (constrained through a controlled vocabulary detailed in paragraph 12.4.5.1).

:hl7TestBed1 a admstrr:TestBed ;
 dct:title "HL7 Gazelle" ;
 dct:hasPart :hl7Simulator1 ;
 dct:hasPart :hl7Simulator2 ;
 dct:hasPart :hl7Validator1 ;
 dct:hasPart :hl7Validator2 ;
 dct:hasPart :hl7TestSuite1 .

:hl7TestBed2 a admstrr:TestBed ;
 dct:title "HL7 SRDC TestBed" ;
 dct:hasPart :hl7TestSuite2 .

:hl7Simulator1 a admstrr:MessagingAdapter ;
 dct:title "Patient Demographics Query simulator" ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientDemographicSupplier> ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientDemographicConsumer> .

:hl7Simulator2 a admstrr:MessagingAdapter ;
 dct:title "PIX Identity Cross-Reference Manager" ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientIdentitySource> .

:hl7Validator1 a admstrr:DocumentValidator ;
 dct:title "Patient Demographics Query validator" ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientIdentitySource> ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientDemographicConsumer> ;
 dct:type <http://purl.org/adms/trr/specificationtype/HL7> .

:hl7Validator2 a admstrr:DocumentValidator ;
 dct:title "GazelleHL7v2Validator External Validation Service" ;
 dct:type <http://purl.org/adms/trr/specificationtype/HL7> .

:hl7TestSuite1 a admstrr:TestSuite ;
 adms:identifier :identifierTs1 ;
 dct:title "HL7V3-P1-TestSuite" ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientDemographicSupplier> ;
 admstrr:businessProcessRole <http://purl.org/adms/trr/businessprocessrole/PatientDemographicConsumer> ;
 owl:versionInfo 1.0;
 dct:publisher <http://example.com/data#publisher1>;
 dct:issued "2010-11-15T10:10:03-07:00"^^xsd:dateTime ;
 dct:modified "2011-11-22T10:10:03-07:00"^^xsd:dateTime ;
 dct:description "Test Suite for Profile 1 of HL7"@en ;
 dct:type <http://purl.org/adms/trr/specificationtype/HL7> ;
 dcat:keyword "WebServices"@en ;
 dcat:keyword "SOAP"@en ;
 dcat:keyword "HTTP"@en ;
 dcat:keyword "WSDL"@en ;
 dct:spatial <http://publications.europa.eu/resource/authority/country/FRA> ;
 admstrr:testCase :tc1 .

:hl7TestSuite2 a admstrr:TestSuite ;
 adms:identifier :identifierTs2 ;
 dct:title "HL7V3-TestSuite from SRDC" ;
 dct:type <http://purl.org/adms/trr/specificationtype/HL7> ;
 dcat:keyword "WebServices"@en ;
 dcat:keyword "WSDL"@en ;
 dct:spatial <http://publications.europa.eu/resource/authority/country/TUR> ;
 admstrr:testCase :tc2 .

• Given a particular actor or profile, what are the simulators, the validation suites and the Test Suites
available?

CWA XXXXX:XXXX

141

Show all instances of class MessagingAdapter, DocumentValidator and TestSuite linked to the specified
actor (admstrr:businessProcessRole).

• Given a particular validation formalism (e.g. schematron), which Test Bed supports it?

List all the Test Beds that contain (dcterms:hasPart) Asset linked to an AssetDistribution (dcat:distribution) or
a PayloadFile when applicable (admstrr:payloadFile) which representation type (dcterms:type) is equal to a
particular validation formalism (constrained through a controlled vocabulary detailed in paragraph 12.4.5.2).

:das_01_xml a admstrr:PayloadFile ;
 dct:description "XML encoding of das1." ;
 dcat:accessURL <http://www.engisis.com/das_01.xml> ;
 adms:representationTechnique <http://purl.org/adms/tr/representationtype/Schematron> ;
 dct:format <http://purl.org/NET/mediatypes/application/xml> .

12.5.4 Testing Resources management

This is a set of action to store and manipulate Testing Resources in the TRR.

Actors If the workspace concept exists for TRR which require some confidentiality:
Workspace User, Workspace Administrator

Otherwise: Authenticated User

Pre condition The user is logged in the TTR

Priority High

Requirements

REQ-6. Add a Testing Resource: the user adds a new Testing Resource to a folder or adds the
reference of a Test Bed or an existing Testing Resource stored in another system

REQ-7. Modify a Testing Resource: the user renames a Testing Resource
REQ-8. Delete a Testing Resource: the user deletes a Testing Resource
REQ-9. Share a Testing Resource: the user shares a Testing Resource with other users of the system,

or makes it public (publish)
REQ-10. Subscribe to a Testing Resource: the user can subscribe to a Testing Resource to get

notifications when the content of a Testing Resource changes
REQ-11. Change the version of Testing Resource: the user manually changes the version of a Testing

Resource
REQ-12. Add meta-data to a Testing Resources: the users modifies the values of the meta-data

associated with a Testing Resource
REQ-13. Add a comment to a Testing Resource: the user can write evaluations and comments

associated to a Testing Resource

12.5.5 Secondary Features

12.5.5.1 Workspace and Folders Management

It is possible to create a folder tree to organize and store Testing Resources. An archive is a top-level folder.

CWA XXXXX:XXXX

142

Actors Workspace Administrator

Pre condition The user is logged in the TTR

Priority Low

Requirements

REQ-14. Add an archive: the user adds a new top-level folder in its workspace
REQ-15. Add a folder: the user adds a new folder to an archive
REQ-16. Modify a folder: the user renames a folder
REQ-17. Delete a folder: the user deletes a folder
REQ-18. Share a folder: the user shares a folder with other users of the system, or makes it public

(publish)
REQ-19. Subscribe to a folder: the user can subscribe to a folder to get notifications when the content of

a folder changes

12.5.5.2 Bulletin board

Actors Authenticated User, Workspace User, Workspace Administrator

Pre condition The user is logged in the TTR

Priority Low

Requirements

REQ-20. Post an announcement: the user posts an announcement on the bulletin board
REQ-21. Edit an announcement: the user edits a previously posted announcement
REQ-22. Delete an announcement: the user deletes an existing announcement
REQ-23. Comment on an announcement: the user comments on an existing announcement
REQ-24. Subscribe to an announcement: the user can subscribe to an announce to get notifications

when the content of the announcement changes or when new comments are posted

12.5.5.3 General administration

A role is associated with a set of privileges. Depending on the user's roles given by the administrator, an
user have access to functionalities.

Actors TRR Administrator

Pre condition The user is logged as administrator in the TTR

Priority Medium (meta-data management is high)

Requirements

CWA XXXXX:XXXX

143

REQ-25. Manage roles: the user creates a new role, modifies and deletes existing roles
REQ-26. Manage users: the user creates a new user, modifies and deletes existing users
REQ-27. Manage roles with users: the user gives a role to an user, remove a role to an user
REQ-28. Manage workspaces: the user creates a new workspace, modifies and deletes existing

workspaces
REQ-29. Add users to a workspace: the user adds existing users to an existing workspace
REQ-30. Manage meta-data: the user creates new meta-data fields to describe the Testing Resources

12.6 Process View

This part explains the TRR processes and how they communicate. It focuses on the runtime behaviour of the
TRR due to the user interactions with the TRR.

Figure 12-4: Publish new Test Suite for the Latest Version of an eBusiness Specification

CWA XXXXX:XXXX

144

Figure 12-5: Find Available Testing Resources for an eBusiness Specification

Figure 12-6: Publish a File or an Interface of new Testing Resources in TRR

CWA XXXXX:XXXX

145

12.7 External Interfaces

12.7.1 User Interfaces

The TRR provides a web-based user interface to publish, search and download the Testing Resources for
the user who does not want to use the GITB Test Bed interface.

12.7.2 Software Interfaces

The TRR is connected with the GITB TestBed component (and particularly the Test Deployment Manager,
part of the Test Bed) through a component called the GITB TRR Client.

12.7.3 Communications Interfaces

The TRR contains a messaging interface called the Test Repository Services, which makes the TRR core
core functionality available. The messaging interface is based on the standard messaging protocols, such as
ebXML, SOAP, REST. It is specified in CWA 16408, Chapter 17.4, page 148-151. The GITB TRR Client
leverages this messaging interface.

Table 12-23: External Interfaces

General Search Functions Get Test Artifacts Matching a Pattern

Administration functions

Create an Archive

Duplicate an Archive

Delete an Archive

Set Access Rights for an Archive

Archival Functions

Store a Test Artifact

Download a Test Artifact

Select a Test Artifact or a Set of Artifacts

Transfer a test Artifact or a Set of Artifacts

CWA XXXXX:XXXX

146

13 Test Registry and Repository (TRR) Prototype Implementation

As part of GITB 3, a prototype implementation for TRR has been performed with a reduced set of
functionality based on the Joinup platform.

To facilitate the implementation of the TRR within Joinup, the set of features supported by the TRR and the
ADMS.TRR have been simplified.

The following sections provide an overview of the prototype implementation. The TRR prototype is available
in Joinup at https://joinup.ec.europa.eu/catalogue/repository/gitb-trr.

13.1 Joinup

Joinup is a collaborative platform created by the European Commission with the following capabilities:

• Sharing of information like news, case studies and events about a project,
• Cataloguing interoperability solutions software and searching on the catalogue.

Joinup is open source and uses ADMS extensively for content description.

The main reasons of using Joinup to host the GITB TRR are:

• the existing features of Joinup cover the GITB TRR required features,
• Joinup is released as an open source project which is actively maintained,
• the sustainability of the GITB TRR is assured after the GITB project ends,
• the mission of the ISA, the organization behind Joinup, is aligned with the mission of GITB and the

TRR.

13.2 TRR in Joinup: Functional Specification

13.2.1 Use Case Diagram

The main features of the TRR are the following:

• management of Testing Resources (creation, view, update, deletion),

• search of Testing Resources.

The use case model describes the functional requirements for a specific workflow. More specifically, it shows
the interactions between the actors and the system from a user’s point of view. The following figure provides
an overview of the different use cases foreseen for the simplified version of the TRR.

CWA XXXXX:XXXX

147

Figure 13-1: TRR Joinup Use Cases

13.2.2 Actors

13.2.2.1 Anonymous User

This actor represents anybody who has access or potential access to the Joinup platform, who can be
logged in or not in the platform but does not belong to any Joinup project. This actor is allowed to search and
view the Testing Resources.

13.2.2.2 Joinup Member

The Joinup Member actor represents all members of the Joinup platform that belong to at least one
repository. The actor has the same authorisations as the anonymous user and can thus search and view
Testing Resources.

When the user is a registered user, the user is able to create, update and delete Testing Resources within a
Repository for Testing Resources.

The Joinup Member can also reference existing Testing Resources inside the Project page he belongs to.
Once a Testing Resource has been created in a repository, it can be referenced in different interoperability
solutions, project, repository, etc.

For example, a Testing Resource about eSens created in the TRR repository could be referenced in the
eSens project, in the GITB project, etc.

13.2.3 Uses Cases

A detailed explanation of each Use Case is provided in this section.

TRR

Search Test
Resource

Anonymous User

Joinup Member

Update Test
Resource

View Test Resource

Create Test
Resource

Delete Test
Resource

CWA XXXXX:XXXX

148

13.2.3.1 Search Testing Resources within the Joinup Platform

Table 13-1: Search Testing Resources in Joinup

Actor Anonymous User, Joinup Project Member

Trigger Ad Hoc

Description Whenever the actor wants to consult any of the Testing Resources they can
access the Joinup platform and search for the relevant Testing Resources.

Preconditions The Testing Resources are available on the platform.

Post conditions Not applicable

Basic flow 1) The actor browses to the existing search section of the Joinup
platform.

2) Search for the Testing Resource using the existing search capability of
Joinup, filter on some fields introduced in paragraph Erreur ! Source
u renvoi introuvable.: Business process, Standard / eBusiness
specification, Actor, Type

3) View the result of the search.

Alternative flow Not applicable

Exceptions Not applicable

Includes Not applicable

Priority High priority

Frequency of use Continuous

Business rules Not applicable

Special requirements Not applicable

Assumptions Not applicable

Additional comments No authentication is required to search the Testing Resources.

Example of typical search:

Which testing resources are available for a specific context and a specific testing purpose?

• Testing Resources = as defined

• Context = Industry A, Country B, eBusiness specification C, role D (an actor in the eBusiness
specification)

• Testing purpose = validation or simulation (type of Testing Resource)

CWA XXXXX:XXXX

149

13.2.3.2 View Testing Resources

Table 13-2: View Testing Resources – Specification in Joinup

Actor Anonymous User, Joinup Project Member

Trigger Ad Hoc

Description Whenever the actor wants to view any of the Testing Resources they can
access the Joinup platform and select the relevant Testing Resource(s).

Preconditions The Testing Resources are available on the platform.

Post conditions Not applicable

Basic flow 1) The actor browses the Joinup platform.

2) The actor search Testing Resources using the search capability of
Joinup.

3) Click on individual Testing Resources available for further details which
brings the user to the details of the Testing Resource with its fields and
allow to download the associated distribution.

Alternative flow Not applicable

Exceptions Not applicable

Includes Not applicable

Priority High priority

Frequency of use Continuous

Business rules Not applicable

Special
requirements

Not applicable

Assumptions Not applicable

Additional
comments

No authentication is required to view the Testing Resources.

CWA XXXXX:XXXX

150

13.2.3.3 Create & Update Testing Resources

Table 13-3: Create & Update Testing Resources – Specification in Joinup

Actor Joinup Project Member

Trigger The member wants to create or update a Testing Resource.

Description To create a Testing Resource, the actor accesses the Joinup platform, click on
Propose your... and select "Testing Resource”.

To update a Testing Resource, the actor can click on edit on the view page.

Preconditions The actor needs to be a registered member, i.e. the user needs to have the
right to create or update content.

Post conditions Not applicable

Basic flow 1) The actor browses the Joinup platform where he chooses to update a
Testing Resource or create a new Testing Resource.

2) The actor fills out the required fields of the Testing Resource.

3) The actor saves and publishes the Testing Resource

4) The Testing Resource is saved under a federated Repository

Alternative flow 1) The actor browses the Joinup platform where he chooses to update a
Testing Resource or create a new Testing Resource.

2) The actor fills out the required fields of the Testing Resource.

3) The actor saves the Testing Resource as draft.

4) The actor re-opens and continues the Testing Resource.

5) The actor saves and publishes the Testing Resource.

Exceptions Not applicable

Includes Not applicable

Priority High priority

Frequency of use Continuous

Business rules Not applicable

Special
requirements

Not applicable

Assumptions Not applicable

Additional
comments

Not applicable

CWA XXXXX:XXXX

151

13.2.3.4 Delete Testing Resources

Actor Joinup Project Member

Trigger The member wants to delete a Testing Resource.

Description To delete a Testing Resource, the actor clicks on delete on the view page.

Preconditions The user needs to be a registered member, i.e. the user needs to have the right
to create, update and delete content on Joinup.

Post conditions Not applicable

Basic flow 1) The actor browses the Joinup platform where he chooses an existing
Testing Resource.

2) The actor deletes the Testing Resource

Alternative flow

Exceptions Not applicable

Includes Not applicable

Priority High priority

Frequency of use Continuous

Business rules Not applicable

Special
requirements

Not applicable

Assumptions Not applicable

Additional
comments

Not applicable

13.2.4 Fields of Testing Resources

To limit the complexity of the technical development required to integrate the TRR in Joinup, it has been
decided to reuse as much as possible the existing fields of the interoperability solution form (see section
13.2.4.1).

When possible, an existing field is slightly modified to match the vocabulary of the TRR (see section
13.2.4.2).

CWA XXXXX:XXXX

152

13.2.4.1 Reused Fields

Field name Field type Comments

ID Existing field of Joinup

Name Existing field of Joinup

Description Existing field of Joinup

Distribution Existing field of Joinup

Solution category Do not add to the form is a specific page for Testing Resources is
created, otherwise, add Testing Resource to the existing select
list

Solution type Shall be extended to contain the Testing Resource type, that's it:
Test Bed, Test Suite, Test Case, Document Assertion Set,
Messaging Adapter, Document Validator, Test Assertion

Keywords Besides allowing the user to associate keywords with a Testing
Resource, it will also be used to specify that a Testing Resource
can work with the GITB reference implementation and if the
Testing Resource is generic or not.

Geographic
coverage

 Existing field of Joinup

Status Existing field of Joinup

Publisher Existing field of Joinup

Licence Existing field of Joinup

Homepage or
Testing Resource
Link

 Used to reference a reference to a Testing Resource that is
stored in a remote repository (covers the case when the Joinup
TRR is used as a registry only)

13.2.4.2 Updated Fields

Field name Field type Comments

Business process Select
checkbox

Called Themes previously, based on an existing taxonomy
(http://eurovoc.europa.eu/). The existing taxonomy can be used
as it is for now.

The type of process that provides a way to unambiguously
identify the business activity to which the Asset is associated

Solution category Select list This is an existing list called Solution category to categorize the
interoperability solutions. The list contains the following
elements: Framework, Service, Tool. A Testing Resource is a
particular interoperability solution.

Reference to
another Testing

Asset Called Reference to another interoperability solution previously

CWA XXXXX:XXXX

153

Resource Allow the user to represent the following relationships:

• hasPart (a TestBed references some Testing Resources
like TestCase or DocumentValidator, etc.)

• testCase (a TestSuite is composed by a set of TestCase)

• documentAssertionSet (a TestCase is composed by a
set of DocumentAssertionSet)

• uses (a TestCase uses a MessagingAdapter or/and a
DocumentValidator)

Relation Type Select list Default values are: Next Version, Previous Version, Translation,
Included Asset, Related Asset, Sample

Somehow we need to support versioning between Testing
Resources so Next Version and Previous Version are important.

Desired values are :

• Next Version and Previous Version

• either: Included Asset to have a generic way to link
Testing Resource (e.g. a Test Suite contains several
Test Cases)

• or: contains (instead of hasPart), testCase,
documentAssertionSet, uses

Standard /
eBusiness
specification

Asset Called Reference to another interoperability solution previously

Allow the user to represent the following relationships:

• Link to an existing standard or specification

Actor List of strings Called Keywords previously

The actor or business process role associated to this Asset. This
is specific to a particular standard / eBusiness specification.
Ideally, it would be an evolving text, i.e. once a user enters a new
text that was not previously in the controlled vocabulary, it is
added to the controlled vocabulary and becomes available for
other users.

Ex: PatientIdentitySource, PatientDemographicConsumer, etc.

CWA XXXXX:XXXX

154

Part IV: GITB Application and Validation based on Use Cases from Public
Procurement, e-Health and Manufacturing Industries

In GITB, use cases are the basis for defining Testing Scenarios, instantiating the GITB Testing Architecture
and developping Test Artifacts for the PoC implementation or other GITB-compliant Test Bes.

Part IV of this report describes testing scenarios for the previously selected business use cases from
different industries. The general approach for applying GITB is first presented in section 14, before
describing its application to the use cases:

• Public Procurement à OpenPEPPOL (Chapter 15), eSens (Chapter 16), CEF – Connecting Europe
Facility (CEF) (Chapter 17), NHS (Chapter 18)

• In eHealth à Clinical Document Architecture (Chapter 19) and IHE XDS (Chapter 20)

• In the automotive and manufacturing industry à Electronic Invoicing based on EDIFACT and OFTP2
(Chapter 21), Cross-border Trade (Chapter 22), Test Bed Interoperability with Application for Truck
Manufacturer (Chapter 23)

Part IV is targeted at eBusiness users, standard development organizations, industry consortia that are
interested in applying the Test Bed Architecture to their eBusiness scenarios.

14 Applying GITB in Use Cases

14.1 Approach

Figure 14-114-1 outlines a step-wise approach for translating eBusiness scenarios into testing requirements
and creating testing solutions based on the GITB Principles and Framework (see section 4).

Figure 14-1: Applying GITB in Use Cases

The starting point is the business user’s need for implementing and testing one or more eBusiness
Scenarios. Business users define the relevant set of eBusiness Specifications as well as the actors involved
in the eBusiness interactions with their roles. From the eBusiness Scenarios, the people testing the business
scenarios, typically business users responsible for implementation or the integrators or software vendors
working with the business users, elaborate on two types of testing requirements. On the one hand, they
analyze “what to test” by deriving the exact Verification Scope from the eBusiness Specifications. On the

CWA XXXXX:XXXX

155

other hand, they determine “how to test” by specifying the testing environment with its operational
requirements. From the testing requirements, the Test Designers and Test Managers can set up the
appropriate Test Services and Test Artifacts supporting the Testing Scenarios.

14.2 Deriving Testing Requirements

Two types of testing requirements have to be taken into account prior to designing a testing solution: the
Verification Scope (“What to test?”), which can be derived from the eBusiness Specifications, and the testing
environment (“How to test”) that determines the operational testing requirements that have to be met by an
appropriate testing solution.

14.2.1 Verification Scope (“What to Test?”)

When implementing eBusiness Scenarios, business users rely on one or more eBusiness Specifications
referring to the different layers of eBusiness: Business Process, Business Document and messaging layer.

At the Business Document Layer, the Verification Scope may comprise structural and semantic validations
as well as cross-layer validations with the Messaging Layer (see Table 14-1).

Table 14-1: Verification Scope (“Test Patterns”) for Business Document Layer Validation

Type of Validation Verification Scope Description

Structural validation Document syntax
and structure

Testing whether messages conform to the message
definitions, e.g. as defined by EDIFACT or XML
document schemas (xsd)

Data types UN/CEFACT Core Data Type Catalogue (CDT
Catalogue)

Document
assembly

Testing whether messages conform to naming and
design rules, e.g. as defined by OAGi or UN/CEFACT
Core Components Business Document Assembly
(CCBDA)

Mandatory /
optional fields

Testing whether all mandatory fields are correctly filled,
e.g. as defined by content definition (e.g. xsd)

Semantic validation Vocabulary and
code list verification

Testing whether data fields comply with defined
vocabulary, code lists (e.g. DUNS, ISO, UNECE, ...) or
core components (e.g. UN/CEFACT CCL, ...)

Business Document
header definitions

Testing whether document headers are correct, e.g. as
defined by UN/CEFACT Standardized Business
Document Header (BDH) or OAGI BOD's application
area

Business rules Testing of business rules, e.g. as specified by
Schematron

QoS

Equivalent
Business Document
versions

Testing whether "equivalent" versions for the same
document, could be used for the same transaction

Equivalent syntax
versions

Testing whether "equivalent" document syntax, could be
used for the same transaction, e.g. different
implementations of syntax neutral Business Document
specifications

CWA XXXXX:XXXX

156

Consistency of
message header
and Business
Document content

Testing whether message header and Business
Document content are aligned

At the Messaging Layer, the Verification Scope comprises structural validation, such as testing messaging
protocols, validating message headers and testing the discovery of endpoints. It may also comprise
validations for QoS and other validations (see Table 14-214-2).

Table 14-2: Verification Scope (“Test Patterns”) for Messaging Layer Validation

Type of Validation Verification Scope Description

Structural validation Messaging Protocol Testing transport and communication level protocols,
e.g. as defined by ebXML Messaging (ebMS), SOAP,
EDIFACT X12, RosettaNet Implementation Framework
(RNIF), Minimal Lower Layer Message Transport
protocol (MLLP)

Message header Testing whether the message header is valid

Addressing Testing the discover of endpoints

Quality of service (QoS)
validation

Security Testing security protocols, e.g. as defined by WS-
Security

Other QoS Testing QoS, e.g. as defined by WS-Policy

Others Equivalent
messaging styles /
formats / versions

Testing "equivalent" messaging styles / formats /
versions, that could be used for the same transaction

At the Business Process Layer, structural validation comprises testing message sequence and process
choreography, the correct interpretation of roles as well as timing conditions. In addition, cross-layer
validations (or profile validation) are performed with Business Document and Messaging Layer (see Table
14.3).

Table 14-3: Verification Scope (“Test Patterns”) for Business Process Layer Validation

Type of Validation Verification Scope Description

Structural validation Sequence of
messages /
choreography

Testing the correct sequence of messages, e.g. as
defined by sequence diagrams;

Testing process choreographies which are informally or
formally defined

Roles Testing the different roles within a Business Processes,
e.g. senders and receivers of messages

Timing conditions Testing the timing conditions in business transactions,
e.g. as defined by triggering events or reaction times

Cross-layer validation /
Profile validation

Data consistency
across Business

Testing data relationships across different messages,
e.g. as defined by a common information model

CWA XXXXX:XXXX

157

Documents

Restrictions on the
Business Document
format and content

Testing syntactic and semantic restrictions on the
Business Document format and content

 Restrictions on
message header

Testing restrictions on message header and consistent
use of conversation ID

 Restrictions on
transport protocols

Testing restrictions on and correct use of transport
protocols

14.2.2 Operational Requirements (“In Which Environment?”)

The testing environment determines operational requirements that have to be met by an appropriate testing
solution:

The testing context (cf. Section 3.4.2) denotes the situation when testing is performed. This can be

• during standard development for quality assurance of the developed eBusiness Specifications,

• when implementing new or upgrading existing eBusiness endpoints,

• when new partners are onboarding.

Testing integration in business environment: Several possibilities exist with regard to integrating in the
business environment.

• Testing system is the in-production system: The user wants to do testing in the in-production
system under exact business conditions (with same firewall setups, security setups, eBusiness
gateway setup).

• Testing system is a non-production system: The user does not want to disturb currently deployed
in-production system, but wants to test a system that is configured differently from the currently
production system.

• No integration in business environment: In this case, testing is not integrated at all with the
business environment, but is done manually.

Testing location:

• On-premise testing: In this case, end-users do not want to access a remote server to undergo
testing of their own eBusiness endpoints. Instead, they download and install a test server, along with
automated Test Suites. On-premise testing avoids external access to an in-production system and
reconfiguration of the firewall. It provides the convenience of local control of the test environment. It
requires that end-users have the IT expertise to do testing onsite.

• Remote testing: In this case, the end-user does not have to handle any test equipment locally, e.g.
because of the IT overhead of doing so, or because it wants to test its SUT exactly in its production
context (not in an off-production test harness). Testing may be controlled by the user (remotely) or
operated by a third party.

• Combination of remote and on-premise testing: A combined approach is appropriate if end-users
want to decouple test execution from test analysis. For example, test driving may be local on the
user premises, whereas test analysis may rely on remote services.

• Testing workshops: In this case, a testing workshop is organized with different Test Participants.

CWA XXXXX:XXXX

158

Testing topology:

• Direct connection of systems (point-to-point)

• Mediation via business hub

• Mediation via testing hub

14.3 Deriving Test Scenarios and Solutions

The GITB Methodology for creating testing solutions for eBusiness Specifications relies on the step-wise
approach presented in the previous section. Ideally, different Test Scenarios are performed sequentially,
starting with standalone document validation (Test Scenario 1) and goes on to interactive Conformance
Testing (Test Scenario 2) and Interoperability Testing (Test Scenario 3). The following table describes how
the three test scenarios differ in terms of Verification Scope and integration in the business environment.

Verification Scope

M
an

ua
l

te
st

in
g

/
no

in

te
ra

ct
io

n
w

ith
 S

U
T

In
te

ra
ct

io
n

w
ith

SU

T

In
te

ra
ct

io
ns

be

tw
ee

n
SU

Ts

Messaging
layer

• Structural validation

• Quality of service (QoS) validation

• Address discovery

• Others

 Test
scenario 3

Business
Document
layer

• Structural validation

• Semantic validation

• Others layer

Test scenario
1

Test scenario
2

Business
Process layer

• Structural validation

• Cross-layer / profile validation

Table 13-4: Testing Scenarios, Requirements and Integration in Business Environment

To setup the Testing Architecture and the Test Bed for realizing the test scenarios, Test Designers and Test
Managers will search for existing Testing Resources and Artifacts using the TRR. If no existing resources are
available, they will have to create the necessary Testing Capability components and artifacts. If a GITB-
compliant Test Bed is available, it will provide the non-core components and be used as testing platform. The
required Testing Capabilities can then be implemented as plug-in components.

CWA XXXXX:XXXX

159

Part IV. 1: Public Procurement

15 OpenPEPPOL

15.1 Background and Testing Requirements

With more than 70 Access Point service providers in Europe, the OpenPEPPOL36 community is growing and
gaining users in Europe. Some countries have mandated its use and are the tractor for private and public
entities around the EU. Other countries are still looking at this open network infrastructure that enables the
interconnection between public entities and private companies to drive electronic public procurement.
Besides electronic public procurement, OpenPEPPOL is more and more being used in the private sector to
exchange structured documents not only with public entities but also with other private companies.

In order to ensure interoperability, different service providers and Regional Authorities have implemented
validation services. We have different examples:

• Norwegian DIFI has created a website for validation of document instances, for example
http://vefa.difi.no/formatvalidering/invoice-validation-en.html.

• Private providers offer free validation services for PEPPOL instances, for example
https://peppol.validex.net/.

Most of these existing validation services use Test Artifacts to ensure the electronic documents that have to
be exchanged over the PEPPOL network are conformant to the OpenPEPPOL specifications. With so many
Access Point service providers and users, the OpenPEPPOL community has the challenge to ensure that
every document exchanged follows the OpenPEPPOL specifications; therefore providing a test service to
validate electronic documents is key to promote interoperability.

Apart from conformance to the document specifications, OpenPEPPOL is currently facing another challenge:
There has been a decision to move from the START transport protocol, created under the PEPPOL project,
to a more common and widely adopted transport protocol called AS2. AS2 transport protocol has been used
for several years now. It therefore offers more tools and is more stable than the new protocol developed
under the PEPPOL Pilot project. However, moving a community of more than 70 Access Points from one
transport protocol to another is not an easy task, and providing tools and services to test for conformance
could be a major benefit.

The OpenPEPPOL community has created a Validation and Quality Assurance project intended for
ensuring its growing community of companies and service providers implement their specifications properly.

The purpose of the Validation and Quality Assurance project is to further clarify and establish clear directions
and rules in terms of responsibilities for quality assurance and validation in the OpenPEPPOL network. The
project will also, if necessary, point to existing available resources and/or develop new resources (if
necessary). Consequently, maintaining validation tools might be in scope for the project. The overarching
objective is to allow parties exchanging information in the OpenPEPPOL network the capability to validate
electronic documents based on the Business Interoperability Specifications (BIS) in a consistent manner.
More complex tasks can be envisaged for the Validation and Quality Assurance project, providing test
scenarios for conformance and interoperability testing.

The Test Scenario described in the following sections addresses a complex scenario, combining the
exchange of a document instance using AS2 with the document validation. Its deployment into the Global
Interoperability Test Bed (GITB) could be a first step to demonstrate how to develop additional Test
Scenarios for the OpenPEPPOL community.

36 http://www.peppol.eu/

CWA XXXXX:XXXX

160

15.2 Verification Scope – What Should Be Tested?

The business process that will be used as the basis for this Test Scenario is the submission of an electronic
invoice through the OpenPEPPOL network using the AS2 protocol. The Test Scenario will focus on
submitting an electronic invoice from a sending Access Point to a receiving Access Point.

15.2.1 Actors

The following actors assume a role in this business process:

• Seller – The original issuer of the electronic invoice. The submission of the electronic invoice to the
sending Access Point is out of scope for this Test Scenario.

• Buyer – The original receiver of the electronic invoice. For the purpose of the test, the buyer will be
always the one registered in the GITB SMP.

• Sending Access Point – The System Under Test.

• Receiving Access Point – Simulated by the GITB, receives electronic invoices in AS2 and validates
them according to the BIS 4A rule set.

• Service Metadata Locator – Simulated by the GITB, receives a request and provides an URL to the
Service Metadata Publisher. A service that provides a client with the capability of discovering the Service
Metadata Publisher endpoint associated with a particular participant identifier. A client uses this service
in order to find where information is held about services for a particular participant business.

• Service Metadata Publisher – Simulated by the GITB, receives a request and provides the AP
endpoint. A service metadata publisher offers a service on the network where information about services
of specific participant businesses can be found and retrieved. It is necessary for a client application to
retrieve the metadata about the services for a target participant business before the client can use those
services to send messages to the participant business.

15.2.2 Business Process

The business process has the following steps:

1. The seller creates an invoice based on the PEPPOL BIS 4A Business Interoperability Specification.

2. The seller authenticates with the sending Access Point and submits the electronic invoice. The
authentication process of the seller to the sending Access Point is considered out of scope for this Test
Scenario.

3. The sending Access Point validates the electronic invoice for conformance to BIS 4A.

4. The sending Access Point looks up the PEPPOL address of the endpoint of the buyer in the SML.

5. Using the SML address, the sending Access Point gets the SMP registry entry.

6. From the SMP entry, the sending Access Point gets the AS2 endpoint of the receiver.

7. The sending Access Point wraps the electronic invoice into a message envelope based on the SBDH
specification.

8. The sending Access Point submits the electronic invoice using AS2 to the receiving Access Point.

9. The receiving Access Point validates the electronic invoice using the BIS 4A rule set.

CWA XXXXX:XXXX

161

15.2.3 Underlying eBusiness Specifications / Standards

The business process is described in the PEPPOL BIS 4A Invoice Only Specification and in the PEPPOL
transport profiles and infrastructure specifications.

Table 15-1: OpenPEPPOL Test Scenario – Relevant eBusiness Specifications

 Relevant specifications / standards References

Business Process Business Process specification is
defined in the PEPPOL BIS 4A.

The BIS 4A is based in CEN BII2 Post
Award CWA.

• PEPPOL BIS 4A

• CWA 16562

Business
Documents

UBL Invoice document customized
following the CEN BII transaction data
model.

Attributes and code list defined using
Genericode by CEN BII.

Business rules defined in schematron
by CEN BII2 and PEPPOL.

• UBL Invoice

• CEN BII T10 Trdm

Transport and
Communication
(Messaging)
Protocols

Messaging protocols for the PEPPOL
network are based on OASIS Busdox
Technical Specification.

The transport protocols is AS2.

• Busdox

• SML Service

• SMP Service

• RFC 4130R

• AS2 PEPPOL

• Policy for use of Identifiers

• Policy for using envelopes (SBDH)

Profiles PEPPOL BIS 4A defines the profile
and provides test files for the
electronic invoice.

• PEPPOL Use Case Test Files

15.3 Testing Environment – How Should Be Tested?

15.3.1 Testing Integration in Business Environment

SUT is a non-production system as these tests can be run in parallel to the development process.

15.3.2 Testing Location

It can be implemented as a web-based remote self-testing tool. The SUT operators can test their system
whenever and wherever they want. The SUT Operators connect to the GITB Test Bed, execute the Test
Suite/Cases and get the test results.

CWA XXXXX:XXXX

162

15.4 Test Scenario

15.4.1 Objectives and Success Criteria

This Test Scenario implements a conformance test of an Access Point to the PEPPOL specifications. The
objective of this Test Scenario is to ensure the sending Access Point (the System Under Test) can submit a
conformant PEPPOL BIS 4A electronic invoice to a receiving Access Point using the AS2 protocol.

The Access Point has to be able to discover the endpoint for the receiving Access Point based on the
information on the electronic invoice header and has to submit the electronic document to this receiving
endpoint using the AS2 protocol.

Success criteria:

• The Sending Access Point can obtain the endpoint address of the receiving Access Point
• The Sending Access Point can send the electronic invoice using the AS2 protocol
• The exchanged electronic invoice follows the BIS 4A specifications

15.4.2 Interaction Diagram/Choreography

15.4.2.1 Endpoint Lookup

The sending Access Point has to perform a lookup for the receiver’s capabilities and technical endpoint
information.

1. An electronic invoice is issued by a PEPPOL user and handed over to the sender Access Point for
transportation to the receiving Access Point. The invoice is then finally delivered to the ultimate
receiver. The method used to communicate between the user and the sender Access Point is out of
scope of the test but the sender Access Point must assure the authenticity of the PEPPOL user and
the validity of the electronic invoice message.

2. The message handed over by the user to the sending Access Point includes an envelope with
 required information such as:

a. Recipient identifier and identifier type

b. Sender identifier and identifier type

c. Document identifier

d. Process identifier

These identifiers must follow the PEPPOL Policy on use of Identifiers.

3. The sender Access Point constructs an URL based on the business identifier of the receiver and
queries the simulated SML.

4. The sender Access Point gets the address of the simulated SMP.

5. The sender Access Point requests service metadata to the receiver simuilated SMP creating a query
with the document identifier and the receiver’s identifier.

6. SMP replies with the metadata for the receiver’s Access Point.

7. The sender Access Point validates that the metadata is signed using a PEPPOL certificate.

8. The sender Access Point gets the AS2 endpoint from the SMP reply.

CWA XXXXX:XXXX

163

Figure 15-1: Endpoint Lookup

15.4.2.2 Document Exchange

OpenPEPPOL requires using AS2 protocol to exchange documents. The workflow between the sender
Access Point and the receiving Access Point is as follows:

1. The sending Access Point gets the OpenPEPPOL issued Private Key X509 certificate for signing
from its own certificate stores.

2. The sending Access Point MUST ensure that the message envelope carries the correct headers

containing identifiers for recipient and sender, process type and document identifier.

3. The sending Access Point signs the message using the OpenPEPPOL AP Certificate Private Key.

4. The sending Access Point uses HTTPS to send message securely to the receiving simulated Access
Point using the URL as retrieved from the SMP and in accordance with AS2 specification RFC 4130.

5. The receiving simulated Access Point responds synchronously with a signed proof-of-delivery

message to the sending Access Point using the Message Delivery Notification (MDN) specification
as specified in the AS2 specification RFC 4130.

6. Finally the sending Access Point archives the MDN as a signed proof-of-delivery of the message.

15.4.3 System Under Test (s)

The System Under Test (SUT) is the sending Access Point and belongs to a Service Provider. The GITB
Test Bed simulates the systems of the OpenPEPPOL Service Metadata Locator (SML), and the Service
Metadata Publisher (SMP) and the receiving Access Point.

15.4.4 Abstract Test Steps

This Test Scenario tests the conformance of a sending Access Point to the OpenPEPPOL specifications. It
discovers the endpoint address of the buyer based on its recipient endpoint identifier, submits the electronic
invoice using the AS2 protocol, and validates whether the electronic invoice is correct.

• The seller prepares a compliant PEPPOL BIS 4A electronic invoice.

• The seller authenticates with the sending Access Point and submits the electronic invoice.

• The sending Access Point validates the electronic invoice for conformance to BIS 4A.

CWA XXXXX:XXXX

164

• The sending Access Point looks up for the endpoint of the buyer in the simulated SML.

o The SUT retrieves the buyer endpoint identifier from the electronic invoice and performs a
DNS lookup into the GITB SML

§ Conformance criteria 1 – Request is well formed

§ How to test – The DNS lookup has to be done for a specific receiver.

• Using the SML address, the sending Access Point gets the SMP registry entry.

o The SUT accesses the simulated SMP and retrieves the information about the protocol and
endpoint where the electronic invoice has to be delivered.

§ Conformance criteria 2 – Request is well formed

§ How to test – Check URI request of the SMP record (e.g.
http://smp.b2brouter.com/complete/iso6523-actorid-upis::9920:ESB63276174)

• From the SMP entry, the sending Access Point gets the AS2 endpoint of the receiver, wraps the
electronic invoice with a SBDH envelope and submits the envelope using AS2 to the receiving
Access Point.

o The SUT creates the AS2 header and submits the electronic invoice using the AS2 protocol
to the receiving Access Point

§ Conformance criteria 3 – Header well formed

§ How to test – The SBDH envelope has the correct format and the proper From and
To fields

§ Conformance criteria 4 – Valid electronic invoice document format

§ How to test – Use the UBL XSD to check the syntax of the electronic invoice

§ Conformance criteria 5 – The contents of the electronic invoice is valid

§ How to test – The test bed receives the electronic invoice and performs the
validation according to the PEPPOL BIS 4A validation artifacts.

15.5 Related Existing Test Artifacts/Tools/Services to Reuse in the Domain

15.5.1 Test Artifacts

The electronic invoice can be tested using the following Test Artifacts:

• UBL XSD Invoice shema:

o UBL-Invoice-2.1.xsd

• CEN BII Transaction 10 schematron validation :

o http://www.invinet.org/BII2conformance/BII2-resources/xslt/BIIRULES-UBL-T10.xsl

o http://www.invinet.org/BII2conformance/BII2-resources/xslt/BIICORE-UBL-T10-V1.0.xsl

• PEPPOL BIS4a schematron validation

CWA XXXXX:XXXX

165

15.5.2 Test Tools and Services

There are several test services implementing the test artifacts described in the section above, but we have
not found services or tools that implement testing for the transport of the documents using AS2.

15.6 Related Stakeholders

Standard Development Organizations (SDOs), industry consortia, companies, public authorities that may be
interested to use the tests are the following:

• Industry consortia

o OpenPEPPOL AISBL

o EESPA

• Private companies

o Service Providers

o ERP Vendors

CWA XXXXX:XXXX

166

16 eSENS

16.1 Background and Testing Requirements

The aim of the e-SENS large-scale project is to develop the idea of the European Digital Market through
innovative ICT solutions and consolidates, improves and extends experiences in previous large-scale pilots
with the objective of facilitating cross-border processes.

The former large-scale projects are:

• SPOCS (Simple Procedures Online for Cross Border Services)37

• e-CODEX (e-Justice Communication via Online Data Exchange)38

• epSOS (European patient Smart Open Services)39

• PEPPOL (Pan European Public Procurement Online)40

• STORK (Secure idenTity acrOss boRders linKed)41

The e-SENS large-scale pilot has been organized into six core work packages:

Figure 16-1: e-SENS Work Packages

There are four non-technical (general coordination and communication) and two technical-oriented work
packages.

Work package 5 objectives are to demonstrate how to deploy real-life ICT services within European
countries, and work package 6 shall create the technical building blocks for these pilots to be deployed.

37 www.eu-spocs.eu

38 www.e-codex.eu

39 www.epsos.eu

40 www.peppol.eu

41 www.eid-stork.eu and www.eid-stork2.eu

CWA XXXXX:XXXX

167

There are several domains for piloting projects (e-Procurement, e-Health, e-Justice and Business Lifecycle)
in e-SENS. This testing scenario will be focused on the e-Procurement domain.

Within the e-Procurement domain, e-SENS stakeholders have suggested several pilots. The Test Scenario
to define and deploy in the Global Interoperability Test Bed (GITB) is related with the pre-award area for
public procurement. The Test Scenario will be focused on the subscription process, where an economic
operator discovers a business opportunity and subscribes his interest for the contracting authority to send
him the tender documents electronically.

e-SENS work package 6 has an specific requirement to create a conformance and test building block. Their
aim is to provide an extensible, highly available and web based testing infrastructure in order to ensure
interoperability conformance of the applications and organizations participating in e-SENS.

This Test Scenario and its deployment into the GITB framework does not compete with the e-SENS work
package 6. On the contrary, it can be used as a template or initial work to develop additional Test Scenarios
for other pilot projects in the e-Procurement or other domains within the e-SENS Large Scale Pilot. The use
of an existing global interoperability Test Bed like the one being developed in the CEN WS GITB can be
encouraged reusing the Test Scenario templates. This could potentially simplify the tasks for the different e-
SENS domains when creating Test Scenarios and could also provide a common and interoperable set of
artifacts to allow the deployment of such Test Scenarios in different Test Beds.

16.2 Verification Scope – What Should Be Tested?

As described below, the business process pilot that will be used to create this Test Scenario is the
subscription of interest in a call for tender from the economic operator to the contracting authority.

16.2.1 Actors and Roles

The following actors participate in this business process:

• Customer: The customer is the legal person or organization who is in demand of a product or
service. Examples of customer roles: buyer, consignee, debtor and contracting authority.

• Supplier: The supplier is the legal person or organization that provides a product or service.
Examples of supplier roles: seller, consignor, creditor, and economic operator.

These actors play the following roles in this business process.

• Contracting authority (CA): ‘Contracting authorities’ means the state, regional or local authorities,
bodies governed by public law, associations formed by one or several of such authorities or one or
more such bodies governed by public law.

• Economic operator (EO): The terms ‘contractor’, ‘supplier’ and ‘service provider’ mean any natural
or legal person or public entity or group of such persons and/or bodies which offers on the market,
respectively, the execution of works and/or a work, products or services. The term ‘economic
operator’ shall cover equally the concepts of contractor, supplier and service provider.

16.2.2 Business Process

The business process is described in the e-SENS work package D5.1 deliverable and in the CEN BII3 Profile
46. The objective of the pilot is to demonstrate how an economic operator can subscribe interest to a tender
published by a contracting authority in a foreign country. The business process has the following steps:

10. CA42 sends a notice to the Publisher

11. Publisher receives the notice and sends an acknowledgement back to the CA

42 Contracting Authority, the public entity that is willing to purchase products, services or works.

CWA XXXXX:XXXX

168

12. EO43 starts a search in the Publisher’s site

13. Publisher finds notices meeting EO’s criteria and sends the results back to the EO

14. EO expresses his interest to one procurement submitting a subscription request to the CA

15. CA receives the subscription request to the procurement by the EO

16. CA subscribes the interested EO and sends him a subscription response as an acknowledgement

17. EO receives the subscription response

16.2.3 Underlying eBusiness Specifications / Standards

Relevant specifications comprise the e-SENS work package D5.1 deliverable and the CEN BII3 Profile 46.

Table 16-1: e-SENS Test Scenario – Relevant eBusiness specifications

 Relevant specifications / standards References

Business Process • Business Process specified in the
Profile 46 – Subscribe to
procedure in CEN BII3

• Draft CEN BII3 Profile to be published
as a formal standard in CEN BII.

Business
Documents

• e-SENS Specification: WP5.1
Deliverable

• Current work in CEN Business
Interoperability Interfaces 3

• XVergabe. The documents that
will be used are the ones from the
XVergabe initiative, according to
the CEN BII T81 and T82
information requirement models

• D5.1 Information Requirements
eTendering

• XVergabe Messages

o Subscription request

o Subscription response

• CEN BII information models

o T81 Expression of interest

o T82 Business Opportunity
subscription confirmation

Transport and
Communication
(Messaging)
Protocols

This test scenario does not test the
communication between the parties

Profiles CEN BII3 - Profile 46

43 Economic Operator, the private company that is willing to sell products, services or works.

CWA XXXXX:XXXX

169

16.3 Test Scenario

This Test Scenario will check the conformance of an Economic Operator system participating in the e-
Tendering e-SENS pilot. The Test Scenario will validate the contents of the submitted subscription request
as well as the choreography of the Economic Operator system under test.

16.3.1 Objectives and Success Criteria

This Test Scenario implements a conformance test for the document exchange defined in the e-SENS D5.1
Information Requirements for eTendering following the Profile 46 established in CEN BII. It is not a complete
test scenario for the whole pilot, but an initial part to test the electronic document structure and associated
business rules for the subscription request document.

The scope of the test is limited to the subscription request and response messages. There are no bindings of
these two information requirement models to existing international standard XML languages such as UBL or
UN/CEFACT, and this is why CEN BII does not provide any binding for these transactions. The e-SENS
project team, though, has been working jointly with the XVergabe initiative from Germany, and as they have
a syntax that can support these two information models, this Test Case will use this syntax.

Success criteria:

1. The correct sequence of the messages as defined in the CEN BII Profile 46

2. Validity of the syntax or structure of the documents being exchanged according to XVergabe syntax

3. Validity of the business rules specified in CEN BII Profile 46 and transaction T81 and T82.

16.3.2 Interaction Diagram/Choreography

The business process activity diagram defined in the CEN BII Profile 46 is as follows:

Figure 16-2: CEN BII3 Profile 46 – Subscribe to Procedure

 Collaboration BII46 - Subscribe to Procedure

«P
oo

l»
 S

up
pl

ie
r

«P
oo

l»
 C

us
to

m
er

«L
an

e»
 E

co
no

m
ic

 O
pe

ra
to

r
- S

ub
sc

ri
be

 to
pr

oc
ed

ur
e

«L
an

e»
 C

on
tr

ac
tin

g
B

od
y

- S
ub

sc
ri

be
 to

 p
ro

ce
du

re

Receive
Subscription
ConfirmationNotice

received

Express Interest in
business opportunity

Subscribed to
Procedure

Confirm Procedure
Subscription

Notice
published

Receive Procedure
Subscripti ion

End

BiiTrdm081 Express
interest in business
opportunity

BiiTrdm082 business
opportunity subscription
confirmation

CWA XXXXX:XXXX

170

16.3.3 System Under Test (s)

This Test Scenario is used to test the system of the Economic Operator. SUTs are non-production systems
as these tests can be run in parallel to the development process.

The GITB simulates the Contracting Authority and the Publisher systems.

16.3.4 Abstract Test Steps

This Test Scenario will check the conformance of an Economic Operator system participating in the e-
Tendering e-SENS pilot. The Test Scenario will validate the contents of the submitted subscription request
as well as the choreography of the Economic Operator system under test.

• CA sends a notice to the Publisher

• Publisher receives notice and sends acknowledgement to CA

• EO sends a search request to the Publisher

• Publisher searches notices

• Publisher sends a set of notices as a result to the EO

• EO shows his interest in one of the received notices

o The Economic Operator has interest in one of the received notices and the SUT creates a
“subscription request” transaction with the reference number of the notice.

§ Conformance criteria 1 – The document is well formed

§ How to test – Check document validity with XSD

§ Conformance criteria 2 – The document is valid

§ How to test – The electronic document is valid according to the business rules
defined in CEN BII for the subscription of interest transaction.

• CA subscribes interest EO and sends acknowledgement to EO including all documents

• CA sends information updates of the procurement project including documents to all interested EO's
whenever there are changes in the procurement process

• EO sends his tender for the procurement project to CA

o The SUT receives acknowledgment from the test bed and creates a tender document.

§ Conformance criteria 3 – Correlation.

§ How to test – The reference number has to be in the list of the business
opportunities sent from the test bed.

§ Conformance criteria 4 – The document is well formed

§ How to test – Check document validity with XSD.

CWA XXXXX:XXXX

171

§ Conformance criteria 5 – Data contents, for instance the submission date and
time shall be the one of the transaction, or the hash of the document has to be
valid.

§ How to test – Apply schematron and code list validation on specified data elements.

§ Conformance criteria 6 – Security check

§ How to test – Validate electronic signature of the tender document.

16.4 Related Existing Test Artifacts/Tools/Services to Reuse in the Domain

There is no syntax binding from the CEN BII information requirements to the XVergabe syntactical electronic
documents. There are also no Business Rules identified for these two information requirement models in the
CEN BII Profile 46 yet.

Currently, the CEN BII Profile 46 and related transaction models are being reviewed internally in CEN BII
pre-award team.

As per the policy on syntax bindings from CEN BII, the Workshop does not create any other than UBL and
UN/CEFACT.

For that reason, the syntax binding to the XVergabe will have to be created within the e-SENS pilot project.

16.4.1 Test Artifacts

Currently the following artifacts already exist:

• XSD Schema for the Subscription Request document from XVergabe

• XSD Schema for the Subscription Response document from XVergabe

• CEN BII3 T81 Expression of interest information requirement model (Draft)

• CEN BII3 T82 Business Opportunity subscription confirmation information requirement model (Draft)

16.4.2 Test Tools and Services

Currently there are no tools or services for these transactions.

16.5 Related Stakeholders

• Industry consortia

o e-SENS

o XVergabe

o CEN WS BII

• Public institutions

o European Commission

o Publications Office

CWA XXXXX:XXXX

172

17 Connecting Europe Facility (CEF)

17.1 Background and Testing Requirements

Connecting Europe Facility (CEF) is the common financing instrument of trans-European networks for the
period 2014-2020. During this period, CEF will finance projects of common interest in three different sectors:

• Transport

• Energy

• Telecommunications

Figure 17-1: CEF Structure

Within the telecommunications area, CEF has a budget to work on Digital Service Infrastructures delivering
networked cross-border services for citizens, businesses and public administrations.

The objective of the CEF Programme is to improve the competitiveness of the European economy by
promoting the interconnection and interoperability, thus supporting the development of a Digital Single
Market.

The aim is to promote these key Digital Service Infrastructures (DSIs) in order to facilitate the cross-border
and cross-sector interaction in Europe. One of the building blocks of the CEF programme is the e-Invoicing
DSI. This building block will help public administrations implement electronic invoicing in compliance with the
e-Invoicing Directive of the European Parliament and the Council.

The European Committee for Standardization (CEN) is defining a new semantic standard for e-Invoicing in
public procurement and the binding of the resulting standard to a number of existing syntaxes in a Project
Committee known as PC 434.

The e-Invoicing solution of CEF should provide tools for the public administrations to reduce the efforts for
complying with the Directive.

This Test Scenario aims at providing a GITB-compliant Test Case to allow the validation of electronic
invoices created using different syntaxes against the PC 434 semantic standard for e-Invoicing.

CWA XXXXX:XXXX

173

17.2 Verification Scope – What Should Be Tested?

17.2.1 Actors

The following actors participate in the business process:

• Customer: The customer is the legal person or organization who is in demand of a product or
service. Examples of customer roles: buyer, consignee, debtor and contracting authority.

• Supplier: The supplier is the legal person or organization that provides a product or service.
Examples of supplier roles: seller, consignor, creditor, and economic operator.

These two parties take the following roles:

• Creditor: One to whom a debt is owed. The Party that claims the payment and is responsible for
resolving billing issues and arranging settlement. The Party that sends the Invoice. Also known as
Invoice Issuer, Accounts Receivable, or Seller.

• Debtor: One who owes debt. The Party responsible for making settlement relating to a purchase.
The Party that receives the Invoice. Also known as Invoicee, Accounts Payable, Buyer

17.2.2 Business Process

The business process activity diagram defined in the PEPPOL BIS 4a can be used to depict the
choreography of the submission of an electronic invoice, although this Test Case does not test the business
process but the conformance of the transaction to the CEN PC 434 semantic model.

Figure 17-2: PEPPOL BIS4a - Invoice Only

17.2.3 Underlying Standards/Specifications

Directive 2014/55/EU of the European Parliament and of the Council of 16 April 2014 on electronic invoicing
in public procurement states that the European "Commission shall request that the relevant European
standardisation organisation draft a European standard for the semantic data model of the core elements of
an electronic invoice. Based on this standardization request from the European Commission, the CEN
Project Committee 434 was created in 2014-05-06. The Work on PC 434 has been divided into several work
streams (WS):

l WS1 Definition of scope.

l WS2 Semantic model.

l WS3 External relations

l WS4 List of syntaxes

l WS5 Syntax binding

l WS6 Guidelines at transmission level

l WS7 Extension methodology

l WS8 Test methodology and test results

CWA XXXXX:XXXX

174

The PC 434 will finalize by the end of 2016.

The list of syntaxes and the rest of deliverables are not available yet. As long as there is not an official list of
syntaxes, PEPPOL BIS for the electronic invoice will be taken as the basis for this Test Case. In order to
demonstrate the potential use of additional syntaxes, the CEN BII syntax binding to the UN/CEFACT Cross
Industry Invoice will be also considered.

Once the syntaxes are selected and the syntax bindings defined within PC434, they must substitute the
PEPPOL BIS and then CEN BII artifacts that will be used as part of this Test Scenario.

Table 17-1: CEF Test Scenario – Relevant eBusiness specifications

 Relevant specifications / standards References

Business Process Not applicable

Business
Documents

• UBL - PEPPOL BIS

• Cross Industry Invoice

• CEN PC 434

o Draft semantic model

• PEPPOL

o PEPPOL BIS 4a Schematron
Validation tools

• CEN BII

o CEN BII Syntax Binding to
UBL

o CEN BII Syntax Binding to CII

• UBL 2.1 Invoice XSD

• Cross Industry Invoice XSD

Transport and
Communication
(Messaging)
Protocols

This test scenario does not test the
communications between the parties.

Profiles Not applicable

17.3 Test Scenario

17.3.1 Objectives and Success Criteria

This Test Scenario implements a conformance test for electronic invoices according to the CEN PC 434
semantic model. Its main objective is that regardless of the syntax used to create the invoice, the Test
Service shall identify whether the PC 434 semantic data model is correctly implemented in the electronic
invoice instance.

The scope of the test is checking both the compliance to the underlying syntax and to the semantic model as
defined by the CEN PC 434. In order to test the underlying syntax, the Test Service must identify it through
the root namespace, and once the syntax layer is successfully validated, the corresponding Schematron
validation artifact must be used to assess whether there are elements in the document not contained within

CWA XXXXX:XXXX

175

the PC 434 semantic model, and whether the existing semantic elements in the document instance fulfil the
business rules defined by the PC 434.

Success criteria:

4. The electronic invoice is written using one of the syntaxes accepted by the PC 434

5. The structure of the electronic invoice is valid according to that syntax

6. The semantics of the PC 434 are correctly implemented in the electronic invoice.

7. The elements in the electronic invoice not part of the semantics of PC 434 are identified.

This Test Case is a document conformance test to ensure an XML electronic invoice is valid according to the
PC 434 semantic data model. This means that the document XML instance belongs to one of the selected
syntaxes, that it is valid according to the syntax Schema, and that contains the elements required by the PC
434 semantic data model.

17.3.2 System Under Test (s)

This Test Case is used to test document instances. A document instance can be provided either by the
Customer or the Supplier. The System Under Test (SUT) is the one creating the electronic invoice.

SUTs can be production systems and this test case can be used as a the initial step for a certification
process of electronic invoices to the CEN PC 434 European Norm.

17.3.3 Abstract Test Steps

The System Under Test (SUT) produces the electronic invoice document. The Test Bed only validates the
document instance, not the business process, therefore there is no test on the communication between both
actors.

• The operator submits or uploads the electronic invoice to the GITB-Compliant Test Bed

o The operator wants to know whether the XML document instance is compliant according to
the PC 434.

§ Conformance criteria 1 – The document belongs to an accepted syntax

§ How to test – Check namespace for the root document being in the list of accepted
syntaxes

§ Conformance criteria 2 – The document structure is valid

§ How to test – The electronic document is valid according to the XSD structure of the
identified syntax.

§ Conformance criteria 3 – The electronic invoice is conformant to PC 434

§ How to test – The electronic invoice is valid according to the CEN PC 434
Schematron semantic model and rules.

§ Conformance criteria 4 – Identification of additional elements

§ How to test – Use an Schematron file to identify elements of the XML electronic
invoice not defined in the CEN PC 434.

CWA XXXXX:XXXX

176

17.4 Related Existing Test Artifacts/Tools/Services to Reuse in the Domain

Currently there are no normative artifacts issued by CEN PC434 that can be used to perform these tests.
Besides, there is not an official list of accepted syntaxes and versions yet.

PEPPOL BIS should be taken as the basis for this test, therefore, the syntax bindings and artifacts used in
PEPPOL to check the electronic invoice document will be used to implement a first release of this Test Case.

Additionally, the CEN BII2 has a syntax binding to the UN/CEFACT CII 3.0 and there are validation artifacts
that will also be implemented to perform this Test Case.

The artifacts issued by the PC 434, once they become published, shall substitute these interim artifacts.

17.4.1 Test Artifacts

Currently the following artifacts will be used:

• UBL XSD Schema for the UBL Invoice

• UN/CEFACT XSD Schema for the Cross Industry Invoice

• CEN BII2 T10 Invoice information requirement model (to be substituted by the CEN PC 434
semantic data model)

• PEPPOL BIS 4a Validation Package

• CEN BII2 T10 CII Core Business Rules (to be substituted by the CEN PC 434 Core rules)

• CEN BII2 T10 CII Business Rules (to be substituted by the CEN PC 434 Business Rules)

17.4.2 Test Tools and Services

This Test Case is implemented in a free GITB-Compliant Test Bed service called Validex.net
(https://validex.net).

17.5 Related Stakeholders

• Industry consortia

o OASIS UBL

o UN/CEFACT CII

o OpenPEPPOL AISBL

• Public institutions

o CEF

o CEN PC 434

o CEN WS BII

o European Commission

CWA XXXXX:XXXX

177

18 Electronic Invoicing for the National Health Service (NHS)

18.1 Background and Testing Requirements

The National Health Service of UK (NHS) has made the strategic decision to adopt implement electronic
invoicing base on the specification of the PEPPOL project. NHS has carried out proof of concept testing and
used the GITB Test Bed for Interoperability testing and message conformance testing, respectively. The
objective of NHS is to request XML electronic invoices from its suppliers, including manufacturers of medical
tools and supplies.

18.2 Verification Scope – What Should Be Tested?

18.2.1 Actors

The following parties and actors assume a role in the invoicing process.

o Buyer – National Health Service of UK as receiver of invoices from various suppliers of medical
supplies

o Seller – Suppliers, such as manufacturers of medical tools and supplies.

o Access point operator – A party operating a PEPPOL access point that may be a seller or
buyer or a service provider such as a VAN service.

18.2.2 Business Process

The business process for the test is delivery of invoices the UK NHS by using Peppol specifications for
transport and document specifications. It is described in the PEPPOL BIS 4A Invoice Only Specification.

Figure 18-1: PEPPOL BIS4a - Invoice Only

18.2.3 Standards and Specifications

Relevant specifications PEPPOL BIS 4A Invoice Only Specification and in the PEPPOL transport profiles
and infrastructure specifications.

Table 18-1: NHS Test Scenario – Relevant eBusiness Specifications

 Relevant specifications / standards References

Business
Process

Business Process specification is
defined in the PEPPOL BIS 4A.

The BIS 4A is based in CEN BII2 Post
Award CWA.

• PEPPOL BIS 4A:
http://www.peppol.eu/ressource-
library/technical-specifications/post-
award/mandatory

• CWA 16562

Business
Documents

UBL Invoice document customized
following the CEN BII transaction data
model.

Attributes and code list defined using

• UBL Invoice: http://docs.oasis-
open.org/ubl/os-UBL-2.1/UBL-2.1.html

• CEN BII T10 Trdm

CWA XXXXX:XXXX

178

Genericode by CEN BII.

Business rules defined in schematron
by CEN BII2 and PEPPOL.

Transport and
Communication
(Messaging)
Protocols

Messaging protocols for the PEPPOL
network are based on OASIS Busdox
Technical Specification.

The transport protocol is AS2.

• Busdox
• PEPPOL SML Service Specification:

https://joinup.ec.europa.eu/svn/peppol/PEP
POL_EIA/1-ICT_Architecture/1-ICT-
Transport_Infrastructure/13-ICT-
Models/ICT-Transport-
SML_Service_Specification-101.pdf

• PEPPOL SML Service Specification:
https://joinup.ec.europa.eu/svn/peppol/PEP
POL_EIA/1-ICT_Architecture/1-ICT-
Transport_Infrastructure/13-ICT-
Models/ICT-Transport-
SMP_Service_Specification-110.pdf

• RFC 4130R
• AS2 PEPPOL :

https://www.ietf.org/rfc/rfc4130.txt,
https://joinup.ec.europa.eu/svn/peppol/Tran
sportInfrastructure/ICT-Transport-
AS2_Service_Specification-2014-01-15.pdf

• Policy for use of Identifiers
• Policy for using envelopes (SBDH)

Profiles PEPPOL BIS 4A defines the profile and
provides test files for the electronic
invoice.

• PEPPOL Use Case Test Files

18.3 Testing Environment – How Should Be Tested?

18.3.1 Testing Integration in Business Environment

Testing will be used to verify potential senders and authorize them for sending electronic invoices to NHS.

18.3.2 Testing Location

It can be implemented as a web-based remote self-testing tool for interoperability testing. Conformance
testing can also be implemented as self-testing tool as well as a real time integration into existing systems.

18.4 Test Scenario

18.4.1 Objectives

The test involves interoperability testing for transfer of XML documents via the PEPPOL infrastructure,
followed by a conformance test for an invoice.

NHS followed the following schedule to test transport level interoperability and conformance based on
PEPPOL business interoperability and transport specifications:

CWA XXXXX:XXXX

179

Figure 18-2: Time Schedule

In this timetable, each activity corresponds to a specific testing type and the following table shows the
mappings between these testing activities and related testing type.

Table 18-2: Testing Activities and Test Type

Testing Activity Test Type
Testing using SMP Conformance Testing
Testing Message Exchange between Access Point
providers

Conformance Testing

Testing Message Exchange between APs and their
clients

Conformance Testing

Testing workflow -
Interoperability testing with all participants Interoperability Testing
Full re-run of tests -

18.4.2 System under Test (s)

Different test scenarios have been developed for NHS to test the different target SUTs:

• Sender Access Point. The test scenario is used to test a senders access point to verify if its
interactions with the tranport network conform to the network specifications. An access point is a
connection to the Peppol network that allows a party to upload or download messages to the
network.

• Receiver Access Point. The test scenario is used to test a receivers access point to verify if its
interactions with the tranport network conform to the network specifications. An access point is a
connection to the Peppol network that allows a party to upload or download messages to the
network.

• An application capable of querying SMLs. The test verifies if an application correctly queries a
Peppol SML. Applications querying the SML are SMP's.

• An application capable of querying SMPs. The test verifies if an application correctly queries an
Peppol SMP. Applications querying an SMP are Access points (AP).

The following table summarizes the Test Cases that have been developed for NHS for the different target
SUTs.

CWA XXXXX:XXXX

180

Table 18-3: NHS Test Cases

ID Name System
Under Test

Test Type Description

1 PEPPOL-
SenderAccessPoin
t-Order-Validation

Sender
Access Point

Conformance
Testing

The objective of this Test Scenario is to ensure the
Sender Access Point (the System Under Test) can
submit a conformant PEPPOL BIS 3A electronic
order to a Receiver Access Point (simulated by
GITB Engine) over the AS2 protocol. Then
submitted document is validated by UBL 2.1
schema and PEPPOL Schematron rules.

2 PEPPOL-
SenderAccessPoin
t-Order-Validex

Sender
Access Point

Conformance
Testing

The objective of this Test Scenario is to ensure the
Sender Access Point (the System Under Test) can
submit a conformant PEPPOL BIS 3A electronic
Order to a Receiver Access Point (simulated by
GITB Engine) over the AS2 protocol. Then
submitted document is validated by Validex.

3 PEPPOL-
Interoperability-
Order

Sender
Access Point
and Receiver
Access Point

Interoperability
Testing

The objective of this Test Scenario is to ensure the
Sender Access Point (System Under Test) can
submit a conformant PEPPOL BIS 3A electronic
order to a Receiver Access Point (System Under
Test) over the AS2 protocol. Then exchanged
document is validated by Validex.

4 PEPPOL-
SenderAccessPoin
t-Invoice-Validation

Sender
Access Point

Conformance
Testing

The objective of this Test Scenario is to ensure the
Sender Access Point (the System Under Test) can
submit a conformant PEPPOL BIS 4A electronic
invoice to a Receiver Access Point (simulated by
GITB Engine) using the AS2 protocol. Then
submitted document is validated by UBL 2.1
schema and PEPPOL Schematron rules.

5 PEPPOL-
SenderAccessPoin
t-Invoice-Validex

Sender
Access Point

Conformance
Testing

The objective of this Test Scenario is to ensure the
Sender Access Point (the System Under Test) can
submit a conformant PEPPOL BIS 4A electronic
invoice to a Receiver Access Point (simulated by
GITB Engine) over the AS2 protocol. Then
submitted document is validated by Validex tool.

6 PEPPOL-
Interoperability-
Invoice

Sender
Access Point
and Receiver
Access Point

Interoperability
Testing

The objective of this Test Scenario is to ensure the
Sender Access Point (System Under Test) can
submit a conformant PEPPOL BIS 4A electronic
invoice to a Receiver Access Point (System Under
Test) over the AS2 protocol. Then exchanged
document is validated by Validex tool.

7 PEPPOL-
SenderAccessPoin
t-DespatchAdvice-
Validation

Sender
Access Point

Conformance
Testing

The objective of this Test Scenario is to ensure the
Sender Access Point (the System Under Test) can
submit a conformant PEPPOL BIS 30A electronic
despatch advice to a Receiver Access Point
(simulated by GITB Engine) over the AS2 protocol.
Then submitted document is validated by UBL 2.1
schema and PEPPOL Schematron rules.

CWA XXXXX:XXXX

181

8 PEPPOL-
SenderAccessPoin
t-DespatchAdvice-
Validex

Sender
Access Point

Conformance
Testing

The objective of this Test Scenario is to ensure the
Sender Access Point (the System Under Test) can
submit a conformant PEPPOL BIS 30A electronic
despatch advice to a Receiver Access Point
(simulated by GITB Engine) over the AS2 protocol.
Then submitted document is validated by Validex
tool.

9 PEPPOL-
Interoperability-
DespatchAdvice

Sender
Access Point
and Receiver
Access Point

Interoperability
Testing

The objective of this Test Scenario is to ensure the
Sender Access Point (System Under Test) can
submit a conformant PEPPOL BIS 30A electronic
despatch advice to a Receiver Access Point
(System Under Test) over the AS2 protocol. Then
exchanged document is validated by Validex tool.

10 SMLClient An application
capable of
querying
SMLs

Conformance
Testing

This Test Scenario implements the lookup
interface which enables a Sender Access Point
(the System Under Test) to discover participants
from Service Metadata Locators (simulated by
GITB Engine).

11 SMPClient An application
capable of
querying
SMPs

Conformance
Testing

This Test Scenario implements the lookup
interface which enables a Sender Access Point
(the System Under Test) to discover services from
Service Metadata Publishers (simulated by GITB
Engine).

18.4.3 Abstract Test Steps

18.4.3.1 Interoperability Testing

Interoperability testing was carried out as follows.

Figure 18-3: Testing Architecture for NHS

Initial efforts of developing GITB Testbed had targeted conformance testing of SUTs first and focused on
development of conformance test cases. After NHS’s requests, some efforts for developing interoperability
testing capabilities have been carried out, as well. These efforts encompass development of tdl:listen
operation of TDL (Test Description Language), updating messaging architecture for listening message
exchanges between SUTs and renewing user interface for managing the interoperation of more than one
SUTs.

CWA XXXXX:XXXX

182

tdl:listen operation is actually a combination of receive and send operations, respectively, where the testbed
receives message from sender SUT actor and sends the received message to receiver SUT actor, therefore
“listens” the communication between them. In order to realize this operation, following updates have been
performed in GITB Messaging API: development of IListener interface to provide methods for listening and
transforming messages/configurations, development of ITransactionListener and IDatagramListener
interfaces to support TCP and UDP based protocols, respectively and implementation
of AbstractTransactionListener and AbstractDatagramListener abstract classes to construct a base
implementation for listening and transforming messages/configurations.

As mentioned before, listen operation is a combination of receive and send operations, and so, abstract
listeners have to manage two transactions: one for receive and one for send. Furthermore, there may be
differences between the structure of the input messages for send operation and the structure of the output
messages retrieved from receive operation. Considering that, listen message is a combination of receive and
send operations, message received from receive operations must be transformed into the appropriate
message format for send operation. Likewise, receive operation configurations must be transformed into
appropriate send operation configuration in order to realize the listen operation.

Default implementation of GITB Messaging API provides a number of listeners for the following network
protocols: UDP, TCP, HTTP, HTTPS, SOAP and AS2. In order to extend the capabilities of GITB Testbed for
listening different types of network protocols, an appropriate listener should be selected as base class and
extended according to protocol requirements.

Last but not least, in order to manage the interoperability testing among SUTs, user interface has been
enhanced to manage the interoperability sessions. When an interoperability test case is selected to be
executed, the SUT operator is provided two options: either creating a new interoperability session or joining
an existing one. In either way, testing can not start unless all SUT operators send their configurations
regarding their SUTs to test engine. After that, all the operators can track the test execution at the same
time.

18.4.3.2 Interoperability and Conformance Test Cases for 3 Document Types

Before the implementation of the interoperability testing there was only one type of test cases, i.e.
conformance test cases. Actually, no distinction was made between different types of test cases at all, and
test cases were assumed to be conformance test cases. In order to differentiate them from each other,
TestCaseType enumeration (0 for conformance, 1 for interoperability test cases) as well as type attribute of
type TestCaseType in gitb:Metadata element have been introduced in the GITB Core Test Bed
Specifications.

Additionally, 6 test cases were developed for 3 different document types (Order, Invoice and Despatch
Advice) in order to validate their conformance to PEPPOL BIS (Business Interoperability Specification): Per
document type, 1 test case addresses interoperability and 5 test cases address conformance, resulting in a
total of 18 test cases. Conformance test cases vary from each other by the validation methods used
(PEPPOL BII Rules and Schemas, Validex tool and etc.) and different transport level specifications (inclusion
of BusDox (SMLs and SMPs) architecture or not).

An example interoperability test case can be seen below. It should be noted that, there are no actors
simulated by the test engine.

<?xml version="1.0" encoding="UTF-8"?>
<testcase id="PEPPOL-Interoperability-Invoice" xmlns="http://www.gitb.com/tdl/v1/"
xmlns:gitb="http://www.gitb.com/core/v1/">
 <metadata>
 <gitb:name>PEPPOL-Interoperability-Invoice</gitb:name>
 <gitb:type>INTEROPERABILITY</gitb:type>
 <gitb:version>0.1</gitb:version>
 <gitb:description>The objective of this Test Scenario is to ensure the Sender Access Point (the System Under
 Test) can submit a conformant PEPPOL BIS 4A electronic invoice to a Receiver Access Point using the AS2
 protocol. Then submitted document is validated by Validex.
 </gitb:description>
 </metadata>
 <namespaces>
 </namespaces>
 <imports>
 </imports>
 <actors>

CWA XXXXX:XXXX

183

 <gitb:actor id="SenderAccessPoint" name="SenderAccessPoint" role="SUT" />
 <gitb:actor id="ReceiverAccessPoint" name="ReceiverAccessPoint" role="SUT"/>
 </gitb:actor>
 </actors>
 <variables>
 </variables>
 <steps>

 <btxn from="SenderAccessPoint" to="ReceiverAccessPoint" txnId="t1" handler="PeppolAS2Messaging"/>
 <listen id="as2_output" desc="Sender Access Point sends Invoice document to Receiver Access Point"
from="SenderAccessPoint" to="ReceiverAccessPoint" txnId="t1" >
 <config name="document.identifier">urn:oasis:names:specification:ubl:schema:xsd:Invoice-
2::Invoice##urn:www.cenbii.eu:transaction:biitrns010:ver2.0:extended:urn:www.peppol.eu:bis:peppol4a:ver2.0::2.1</config>
 <config name="process.identifier">urn:www.cenbii.eu:profile:bii04:ver2.0</config>
 </listen>

 <listen desc="Receiver Access Point sends MDN back to Sender Access Point" from="ReceiverAccessPoint"
to="SenderAccessPoint" txnId="t1" />
 <etxn txnId="t1"/>

 <verify handler="ValidexValidator" desc="Validate Invoice document using the Validex validation service">
 <input name="document">$as2_output{business_message}</input>
 <input name="name">"Invoice document"</input>
 </verify>
 </steps>
</testcase>

Figure 18-4: Sample Interoperability Test Case

Figure 18-5: Interactions in Interoperability Test Case

An example for conformance test case can be seen below. It should be noted that, there are actors simulated by test
engine.

<?xml version="1.0" encoding="UTF-8"?>
<testcase id="PEPPOL-SenderAccessPoint-Invoice-BusDox-Validex" xmlns="http://www.gitb.com/tdl/v1/"
xmlns:gitb="http://www.gitb.com/core/v1/">
 <metadata>
 <gitb:name>PEPPOL-SenderAccessPoint-Invoice-BusDox-Validex</gitb:name>
 <gitb:type>CONFORMANCE</gitb:type>
 <gitb:version>0.1</gitb:version>
 <gitb:description>The objective of this Test Scenario is to ensure the Sender Access Point (the System Under
 Test) is capable of querying both SML and SMP as well as submitting a conformant PEPPOL BIS 4A electronic
 invoice to a Receiver Access Point using the AS2 protocol. Then submitted document is validated by Validex.
 </gitb:description>
 </metadata>
 <namespaces>
 </namespaces>
 <imports>
 <artifact type="schema" encoding="UTF-8"
name="UBL_Invoice_Schema_File">Peppol_BIS_4A_Invoice/artifacts/UBL/maindoc/UBL-Invoice-2.1.xsd</artifact>
 <artifact type="schema" encoding="UTF-8" name="PEPPOL_BII_CORE_Invoice_Schematron_File"
>Peppol_BIS_4A_Invoice/artifacts/PEPPOL/BII CORE/BIICORE-UBL-T10-V1.0.sch</artifact>
 <artifact type="schema" encoding="UTF-8"
name="PEPPOL_BII_RULES_Invoice_Schematron_File">Peppol_BIS_4A_Invoice/artifacts/PEPPOL/BII
RULES/BIIRULES-UBL-T10.sch</artifact>
 <artifact type="schema" encoding="UTF-8" name="SBDH_Schematron_File"
>Peppol_BIS_4A_Invoice/artifacts/PEPPOL/SBDH.sch</artifact>
 <artifact type="object" encoding="UTF-8"
name="SMP_Metadata_Template">Peppol_BIS_4A_Invoice/artifacts/PEPPOL/peppol-smp-metadata-
template.xml</artifact>
 </imports>
 <actors>

CWA XXXXX:XXXX

184

 <gitb:actor id="SenderAccessPoint" name="SenderAccessPoint" role="SUT" />
 <gitb:actor id="ReceiverAccessPoint" name="ReceiverAccessPoint" role="SIMULATED">
 <gitb:endpoint name="as2">
 <gitb:config name="participant.identifier">0088:12345test</gitb:config>
 </gitb:endpoint>
 </gitb:actor>
 <gitb:actor id="ServiceMetadataLocator" name="ServiceMetadataLocator" role="SIMULATED" />
 <gitb:actor id="ServiceMetadataPublisher" name="ServiceMetadataPublisher" role="SIMULATED" />
 </actors>
 <variables>
 <var name="as2_address" type="string" />

 <!-- Participant Identifier of Sender Access Point (System Under Test). Must be retrieved
 from SUT representative -->
 <var name="sender_participant_identifier" type="string" />
 <!-- Participant Identifier of Receiver Access Point (Simulated) -->
 <var name="receiver_participant_identifier" type="string" />
 <!-- Represents the type of document that the recipient is able to handle -->
 <var name="document_identifier" type="string">
 <value>urn:oasis:names:specification:ubl:schema:xsd:Invoice-
2::Invoice##urn:www.cenbii.eu:transaction:biitrns010:ver2.0:extended:urn:www.peppol.eu:bis:peppol4a:ver2.0::2.1</value>
 </var>
 <!-- Root namespace of the document identifier -->
 <var name="document_identifier_ns" type="string">
 <value>urn:oasis:names:specification:ubl:schema:xsd:Invoice-2</value>
 </var>
 <!-- The identifier of the process -->
 <var name="process_identifier" type="string">
 <value>urn:www.cenbii.eu:profile:bii04:ver2.0</value>
 </var>
 <!-- XML local element name of the root-element in the business message -->
 <var name="business_message_type" type="string">
 <value>Invoice</value>
 </var>

 </variables>
 <steps>
 <assign to="$as2_address">concat("https://", $SenderAccessPoint{ReceiverAccessPoint}{network.host}, ":",
$SenderAccessPoint{ReceiverAccessPoint}{network.port})</assign>
 <assign to="$receiver_participant_identifier"
source="$SenderAccessPoint{ReceiverAccessPoint}{participant.identifier}" />
 <assign to="$sender_participant_identifier" source="$SenderAccessPoint{participant.identifier}" />

 <btxn from="SenderAccessPoint" to="ServiceMetadataLocator" txnId="t3" handler="SMLMessaging"/>
 <receive id="sml_output" desc="Locate SMP" from="SenderAccessPoint" to="ServiceMetadataLocator"
txnId="t3">
 <config name="dns.domain">B-351cd3bce374194b60c770852a53d0e6.iso6523-actorid-upis.localhost.</config>
 </receive>
 <send desc="Resolve SMP domain" from="ServiceMetadataLocator" to="SenderAccessPoint" txnId="t3">
 <input name="dns.address" source="$SenderAccessPoint{ServiceMetadataPublisher}{network.host}"/>
 </send>
 <etxn txnId="t3"/>

 <btxn from="SenderAccessPoint" to="ServiceMetadataPublisher" txnId="t2" handler="SMPMessaging"/>
 <receive id="smp_output" desc="Send message to SMP to get Receiver Access Point address"
from="SenderAccessPoint" to="ServiceMetadataPublisher" txnId="t2" />
 <send id="smp" desc="Send SMP Metadata back" from="ServiceMetadataPublisher" to="SenderAccessPoint"
txnId="t2">
 <input name="smp_metadata" source="$SMP_Metadata_Template"/>
 </send>
 <etxn txnId="t2"/>

 <btxn from="SenderAccessPoint" to="ReceiverAccessPoint" txnId="t1" handler="PeppolAS2Messaging"/>
 <receive id="as2_output" desc="Send message to Receiver Access Point" from="SenderAccessPoint"
to="ReceiverAccessPoint" txnId="t1" >
 <config name="document.identifier">urn:oasis:names:specification:ubl:schema:xsd:Invoice-
2::Invoice##urn:www.cenbii.eu:transaction:biitrns010:ver2.0:extended:urn:www.peppol.eu:bis:peppol4a:ver2.0::2.1</config>
 <config name="process.identifier">urn:www.cenbii.eu:profile:bii04:ver2.0</config>
 </receive>
 <send id="mdn" desc="Send MDN back to Sender Access Point" from="ReceiverAccessPoint"
to="SenderAccessPoint" txnId="t1">
 <input name="http_headers" source="$as2_output{http_headers}" />
 </send>
 <etxn txnId="t1"/>

 <verify handler="ValidexValidator" desc="Validate Invoice document using the Validex validation service">
 <input name="document">$as2_output{business_message}</input>
 <input name="name">"Invoice document"</input>
 </verify>
 </steps>
</testcase>

Figure 18-6: Sample Conformance Test Case

CWA XXXXX:XXXX

185

Figure 18-7: Interaction in Conformance Test Case with Actors Simulated by the Test Bed

18.4.3.3 SML and SMP Test Cases

NHS has requested development of test cases that target only the testing of sending SML and SMP
requests. SUTs pass the tests if they can successfully send DNS and HTTP queries to SML and SMPs
(respectively) simulated by test engine, and receive their responses.

An example for conformance test case that targets SML querying can be seen below:

<?xml version="1.0" encoding="UTF-8"?>
<testcase id="SMLClient" xmlns="http://www.gitb.com/tdl/v1/"
xmlns:gitb="http://www.gitb.com/core/v1/">
 <metadata>
 <gitb:name>SML Client</gitb:name>
 <gitb:type>CONFORMANCE</gitb:type>
 <gitb:version>0.1</gitb:version>
 <gitb:description>This test scenario implements the lookup interface which enables senders to discover
 service metadata about specific target participants
 </gitb:description>
 </metadata>
 <namespaces>
 </namespaces>
 <imports>
 </imports>
 <actors>
 <gitb:actor id="SMLClient" name="SystemUnderTest" role="SUT" />
 <gitb:actor id="ServiceMetadataLocator" name="ServiceMetadataLocator" role="SIMULATED" >
 <gitb:endpoint name="http">
 <gitb:config name="participant.identifier">0088:12345test</gitb:config>
 </gitb:endpoint>
 </gitb:actor>
 </actors>
 <variables>

 </variables>
 <steps>
 <btxn from="SMLClient" to="ServiceMetadataLocator" txnId="t1" handler="SMLMessaging"/>
 <receive id="sml_output" desc="Locate SMP" from="SMLClient" to="ServiceMetadataLocator"
txnId="t1">
 <config name="dns.domain">B-351cd3bce374194b60c770852a53d0e6.iso6523-actorid-
upis.localhost.</config>
 </receive>
 <send desc="Resolve SMP domain" from="ServiceMetadataLocator" to="SMLClient" txnId="t1">
 <input name="dns.address" source="$SMLClient{ServiceMetadataLocator}{network.host}"/>
 </send>
 <etxn txnId="t1"/>
 </steps>
</testcase>

Figure 18-8: Conformance Test Case Targeting SML Querying

CWA XXXXX:XXXX

186

Figure 18-9: Interaction and Sample Test Report for SML Querying

An example for conformance test case that targets SMP querying can be seen below:

<?xml version="1.0" encoding="UTF-8"?>
<testcase id="SMPClient" xmlns="http://www.gitb.com/tdl/v1/" xmlns:gitb="http://www.gitb.com/core/v1/">
 <metadata>
 <gitb:name>SMP Client</gitb:name>
 <gitb:type>CONFORMANCE</gitb:type>
 <gitb:version>0.1</gitb:version>
 <gitb:description>This test scenario implements the lookup interface which enables senders to discover
 service metadata about specific target participants
 </gitb:description>
 </metadata>
 <namespaces>
 </namespaces>
 <imports>
 <artifact type="object" encoding="UTF-8"
name="SMP_Metadata_Template">ServiceMetadataPublisher/artifacts/peppol-smp-metadata-template.xml</artifact>
 </imports>
 <actors>
 <gitb:actor id="SMPClient" name="SMP Client" role="SUT" />
 <gitb:actor id="ServiceMetadataPublisher" name="ServiceMetadataPublisher" role="SIMULATED" />
 </actors>
 <variables>
 <!-- Represents the AS2 endpoint address -->
 <var name="as2_address" type="string">
 <value>https://127.0.0.1/as2</value>
 </var>
 <!-- Represents the type of document that the recipient is able to handle -->
 <var name="document_identifier" type="string">
 <value>urn:oasis:names:specification:ubl:schema:xsd:Invoice-
2::Invoice##urn:www.cenbii.eu:transaction:biitrns010:ver2.0:extended:urn:www.peppol.eu:bis:peppol4a:ver2.0::2.1</value>
 </var>
 <!-- The identifier of the process -->
 <var name="process_identifier" type="string">
 <value>urn:www.cenbii.eu:profile:bii04:ver2.0</value>
 </var>
 </variables>
 <steps>
 <btxn from="SMPClient" to="ServiceMetadataPublisher" txnId="t1" handler="SMPMessaging"/>
 <receive id="smp_output" desc="Send message to SMP to get Receiver Access Point address"
from="SMPClient" to="ServiceMetadataPublisher" txnId="t1" />
 <send id="smp" desc="Send SMP Metadata back" from="ServiceMetadataPublisher" to="SMPClient"
txnId="t1">
 <input name="smp_metadata" source="$SMP_Metadata_Template"/>
 </send>
 <etxn txnId="t1"/>
 </steps>
</testcase>

Figure 18-10: Conformance Test Case Targeting SMP Querying

CWA XXXXX:XXXX

187

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<module xmlns="http://www.gitb.com/core/v1/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="ValidexValidator" uri="urn:com:gitb:validation:ValidexValidator"
 xsi:type="ValidationModule" isRemote="true"
serviceLocation="http://localhost:9091/service/ValidationService">
 <metadata>
 <name>Validex Validator</name>
 <version>1.0</version>
 <description>Validex wrapper validation service</description>
 </metadata>
 <inputs>
 <param type="string" use="R" name="name" desc="Name of the document to be validated" />
 <param type="object" use="R" name="document" desc="XML document to be validated" />
 </inputs>
 <outputs>
 <param name="string" type="name" desc="Name of the document to be validated"/>
 <param name="string" type="document" desc="XML document to be validated"/>
 <param name="string" type="reportId" desc="Report id given by the Validex service"/>
 <param name="string" type="reportLink" desc="Report link to the Validex reportin interface"/>
 </outputs>
</module>

Figure 18-11: Interaction and Sample Test Report for SML Querying

18.5 Existing Test Artifacts/Tools/Services to Reuse in the Domain

Test was carried out by using the following tools

• GITB Test Bed

• PEPPOL messaging network

18.6 Stakeholders

Standard Development Organizations (SDOs), industry consortia, companies, public authorities that may be
interested to use the tests:

• Industry consortia

o National Health Service of UK

o Peppol project

• Private companies

o Manufacturers supplying NHS

CWA XXXXX:XXXX

188

Part IV. 2: e-Health

19 Clinical Document Architeture (CDA)

19.1 Background and Testing Requirements

The HITCH project (http://www.hitch-project.eu/), the Antilope project (http://www.antilope-project.eu/) and
the eHealth Governance Initiative (http://www.ehgi.eu/) recommend the use of integration profilea by the
European Union member states in order to promote the interoperability of eHealth applications. Among the
recommended profiles, we would like to focus the following 2 profiles:

• XDS.b for sharing document,

• XD-Lab for sharing lab reports.

Austria, France, Luxemburg, Swiss among other countries are publishing specifications on how to share lab
reports using these profiles. The proposal is to apply GITB to the purpose of testing the implementation of
these 2 profiles in those countries. How could these countries benefit from sharing testing artifact and thus
insure better interoperability?

The test case described in that document focus on testing the conformance of CDA documents containing
laboratory reports.

19.2 Verification Scope – What Should be Tested?

This Test Case focuses on testing the conformance of CDA Lab reports. CDA Documents are usually
designed as Russian dolls as described on the following schema. Looking at the specifications of the “Lab
Report” document as specified by various organizations in Europe and elsewhere shows that all of them are
referring the same underlying specifications.

1. In France, ASIP santé published with the CI-SIS : Cadre d’interopérabilité des systèmes
d’information de santé the specifications of a “Volet Compte Rendu d’Examens de Biologie
Médicale44”.

2. In Austria, Elga45 published the document HL7 Implementation Guide for CDA® R2: Laborbefund46.

3. In Italy, IHE Italy47 published the document Rapporto di medicina di laboratorio48

4. In Switzerland, eHealthSuisse 49published Format d’échange : Rapports de laboratoire soumis à
déclaration en Suisse50.

44 http://esante.gouv.fr/services/referentiels/referentiels-d-interoperabilite/cadre-d-interoperabilite-des-systemes-d

45 http://www.elga.gv.at/index.php?id=28

46
http://www.elga.gv.at/fileadmin/user_upload/uploads/download_Papers/Harmonisierungsarbeit/140902__upload/HL7_Im
plementation_Guide_for_CDA_R2_-_Laborbefund.pdf

47 http://www.hl7italia.it/node/34

48 http://www.hl7italia.it/sites/default/files/Hl7/docs/public/HL7Italia-IG-CDA2%2020RapportoMedicinaLab-v01.00-SI.pdf

49 http://www.e-health-suisse.ch/umsetzung/00252/index.html?lang=fr

50 http://www.e-health-
suisse.ch/umsetzung/00252/index.html?lang=fr&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1ae2IZn4Z2qZpnO2Yuq2Z
6gpJCDdIB5e2ym162epYbg2c_JjKbNoKSn6A--

CWA XXXXX:XXXX

189

Figure 19-1: CDA-CH Laboratory Reports for Public Health in relation to other norms and profiles.

The specifications provided by these 4 countries rely all on the IHE XD-LAB technical framework51. France,
Austria and Switzerland provide also a set of testing tools in order to check the conformance of the CDA
document that claim to support their specifications.

The purpose of this use case is to optimize testing and test tools development by using the “Russian Doll”
architecture of the CDA documents.

The proposed use case described here is designed for the specific Laboratory Report document, but it could
also be applied to other type of documents that these countries have specified.

The challenge is to reuse test artifacts for the conformance checking of CDA document in various
national/regional project that use common references.

The benefit is clear for all parties. The burden to test the common part can be re-used. Only the tests specific
to the requirement of a country specification need to be developed, the rest remains common. Quality of the
testing is harmonized and risk of different outcome due to different implementation of the tools are reduced.

19.2.1 Parties/Actors

The following parties take some role in the business process.

• Content Creator : The issuer of the CDA Laboratory Report Document document.

• Content Consumer : the consumer of the CDA Laboratory Report Document. The consumer shall be
able to read the document and “digest its content”.

19.3 Underlying eBusiness Specifications / Standards

Table 19-1: CDA – Relevant eBusiness Specifications

 Relevant specifications / standards References

Business Process IHE XD-LAB See 52

51 http://ihe.net/uploadedFiles/Documents/Laboratory/IHE_LAB_TF_Vol3.pdf

52 http://ihe.net/uploadedFiles/Documents/Laboratory/IHE_LAB_TF_Vol1.pdf

CWA XXXXX:XXXX

190

Business
Documents

HL7 CDA

IHE XD-LAB

See 53

See 51 and 54

Transport and
Communication
(Messaging)
Protocols

Transport is out of the scope of this
document. See Test Case 2 for the
protocol

Profiles

19.4 Testing Scenarios

19.4.1 Objectives and Success Criteria

The testing is focused on the conformance of the exchanged laboratory report documents.

The criteria for success:

1. Document is a well-formed XML document

2. Document is valid according the CDA schema (might be extended by the regional specifications)

3. Document meets the requirements specified in the specs (syntax and semantic)

This section will describe what and how we will test based on the target specification. The perspective of this
section is from the software architect responsible for utilizing the GITB framework to set up the appropriate
Test Services and Test Artifacts to support the Testing Scenarios.

19.4.2 System Under Test (s)

The systems under test in this case are the Content Creator, the system that creates the CDA Laboratory
Report document and the Content Consumer who consumes it.

The Content Creator is tested for its ability to create documents that are conformant to the specifications.

The Content Consumer is tested for its ability to read and correctly display the information provided in the
documents created by the Document Creator.

19.4.3 Abstract Test Steps

19.4.3.1 Testing the content creator

The content creator creates a set of documents

Each created document is checked for conformance

A report for conformance is created, the report include the list of requirement that were identified and tested
in the documents.

53 http://www.hl7.org

54 http://ihe.net/uploadedFiles/Documents/Laboratory/IHE_LAB_TF_Vol1.pdf

CWA XXXXX:XXXX

191

19.4.3.2 Testing the content consumer

The content consumer consumes (load) a set of documents.

The content consumer shows evidence that the documents are correctly loaded and that it can display the
content of the information contained in the consumed documents.

19.5 Related Existing Test Artifacts/Tools/Services to Reuse in the Domain

A number of test artifacts such as schematron or model can be reused:

• ASIP Santé, Elga and eHealthSuisse provide Schematrons for the validation of their respective
specifications.

• IHE and NIST provide schematron for the validation of XD-LAB CDA documents.

• MDHT and IHE provide model based CDA Document validator.

Tooling is also available:

• IHE provides a web based55 and web service to perform the validation of CDA document either
using a schematron56 or a model57

• NIST provide a Web based and Web service schematron validation58

19.6 Related Stakeholders

The choice of this Test Case is driven by its potential interest for many organization worldwide. Interested
bodies are listed below:

• HL7 : SDO
• IHE : Integrating the Healthcare Enterprise is a not for profit organization for the promotion of the

interoperability of solutions in Healthcare
• Public Authorities that customized the profile:

o ASIP Santé in France
o ELGA in Austria
o eHealthSuisse in Switzerland
o Agence eSanté in Luxemburg
o NICTIZ in the Netherlands
o Plate-format eHealth in Belgium

• Companies that implements the profile
o 30 companies worldwide have shown interest in sharing this type of documents at during the

IHE Connectathons in Europe or in North America
§ ALERT Life Sciences Computing
§ Allscripts Healthcare Solutions
§ Atlas
§ Axway
§ CapMed
§ CareEvolution, Inc.
§ eClinicalWorks
§ Eclipsys Corporation

55 http://gazelle.ihe.net/EVSClient

56 http://gazelle.ihe.net/SchematronValidator

57 http://gazelle.ihe.net/CDAGenerator/home.seam

58 http://cda-validation.nist.gov/cda-validation/

CWA XXXXX:XXXX

192

§ e-MDs
§ Engineering Ingegneria Informatica
§ Evolucare Technologie
§ Fidelity Information Systems
§ Forcare BV
§ GE Healthcare
§ Get Real Health
§ Global Care Quest
§ InterSystems Corporation
§ Karos Health
§ MEDecision
§ Medical Informatics Engineering
§ NextGen
§ No More Clipboard
§ Open Health Tools
§ SAIC
§ SIEMENS Medical Solutions
§ Tiani "Spirit" Gmbh - Cisco Systems Inc.
§ Topicus Zorg

19.7 Re-usability of Test artifacts/Tools/Services for GITB3

This Test Case gives GITB3 the ability to reuse Test Artifacts, tools and services in cross-organization
scenarios.

Scenario 1: ELGA, ASIP and eHealthSuisse to use a common set of tools to check the conformance of the
XD-LAB profile implementation in CDA documents target to their respective context.

Scenario 2: Company can test its implementation of the XD-LAB profile and check the conformance to the
different extensions made by ELGA, ASIP and eHealthSuisse.

CWA XXXXX:XXXX

193

20 IHE – Cross-Enterprise Document Sharing (XDS)

The purpose of this Test Scenario is the sharing of Test Artifacts for testing the interoperability of systems
participation to a sharing of document workflow based on XDS.b.

20.1 Background and Testing Requirements

Cross-Enterprise Document Sharing (XDS) provides a standards-based specification for managing the
sharing of documents between any healthcare enterprise, ranging from a private physician office to a clinic to
an acute care in-patient facility and personal health record systems. Many regional/national projects
worldwide59 are deploying/specifying the sharing of medical document using an infrastructure based on the
IHE XDS.b suite of profiles. We are proposing in this scenario to share the tests artifacts that could be
common for all these projects, the XDS.b part of the exchange.

Sharing the same set of Tests Artifacts among these project will help them. A set of Test Artifacts allowing
the testing of the underlying transport mechanism will be available for them. So that they will only test the
parts specific to their projects. SUTs who already got tested for one project know that the underlying
transport mechanism has been tested and can focus on the projects specifics.

The benefits are:

• Reuse of test artifacts and test tools,
• Harmonization of the infrastructures deployed by the projects, avoiding “specifics” implementations,
• Reduce the cost of test design and testing.

20.2 Verification Scope – What to Test?

The business process that needs to be tested is described in the IHE Technical Frameworks of the IT-
Infrastructure domain and available on the IHE web site.60

20.3 Actors

The parties involved are the Document Source, Document Consumer, Document Registry and Document
Repository as described in the figure below.

59 See http://motorcycleguy.blogspot.com/2010/01/where-in-world-is-xds.html

60See
http://ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol1.pdf
http://ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol2b.pdf
http://ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol2x.pdf
http://ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol3.pdf

CWA XXXXX:XXXX

194

Figure 20-1: Parties involved in IHE XDS

• The Document Source Actor is the producer and publisher of documents. It is responsible for sending
documents to a Document Repository Actor. It also supplies metadata to the Document Repository Actor
for subsequent registration of the documents with the Document Registry Actor.

• The Document Repository is responsible for both the persistent storage of these documents as well as
for their registration with the appropriate Document Registry. It assigns a uniqueId to documents for
subsequent retrieval by a Document Consumer.

• The Document Registry Actor maintains metadata about each registered document in a document
entry. This includes a link to the Document in the Repository where it is stored. The Document Registry
responds to queries from Document Consumer actors about documents meeting specific criteria. It also
enforces some healthcare specific technical policies at the time of document registration.

• The Document Consumer Actor queries a Document Registry Actor for documents meeting certain
criteria, and retrieves selected documents from one or more Document Repository actors.

20.3.1 Interaction Diagram/Choreography

The following diagram shows the interactions between that need to be covered by the tests.

Figure 20-2

20.3.2 Underlying eBusiness Specifications / Standards

The XDS.b profile is relying on the following set of standards and specifications:

• ebXML
• IHE XDS.b
• HL7v3 datatypes
• MTOM
• HTTP
• SOAP

Patient Identity
Source

Document
Registry

Document
Repository

Document
Source

Document
Consumer

Patient Identity
Feed

Query
Documents

Retrieve
Document

Provide and
Register
Document
Set

Register
Document Set

CWA XXXXX:XXXX

195

• TLS

20.4 Details/Requirements of Test Scenario

20.4.1 Objectives and Success Criteria

The following test scenarii implement conformance and interoperability tests for the XDS.b profile. Different
tests need to be performed depending on which role is played by the system under test.

The conformance to the XDS.b profile specification of the messages exchanged between the SUT and the
simulator or the partner will be verified as well as the correct behavior of the actors participating to the test.

If we exclude the Patient Identity feed from the testing scope, in order to test this profile, we have 4 actors to
test and 4 transactions to test. Testing is described by considering each of the actors playing the role of the
SUT.

An affinity domain needs to be defined in order to perform the testing. The SUT and the Simulator involved in
the testing need to share coded values and certificates.

In the preparation of the testing, the actors document registry and document repository need to be feed with
data for testing purposes.

20.4.2 System(s) Under Test

Possible SUTs are considered in the following Test Cases. Each scenario describes the test plan for one of
them. As described above the Patient Identity Source is not considered here, restraining the SUT to the
following list:

• Document Source
• Document Consumer
• Document Repository
• Document Registry

20.4.3 Abstract Test Steps

20.4.3.1 Testing the Document Source

In order to test the Document Source actor we need a simulator playing the role of the Document Repository.

The different test steps required to test the Document Source are presented in the following sequence
diagram.

Figure 20-3: Testing the Document Source

CWA XXXXX:XXXX

196

20.4.3.2 Testing the Document Consumer

In order to test the Document Consumer actor we need a simulator playing the role of both the Document
Registry and the Document Repository actors. The different test steps required to test the Document
Consumer are presented in the following sequence diagram.

Figure 20-4: Testing the Document Consumer

20.4.3.3 Testing the Document Repository

In order to test the Document Repository actor we need a simulator playing the role of both the Document
Consumer and the Document Source actors. The different test steps required to test the Document
Repository are presented in the following sequence diagram.

Figure 20-5: Testing the Document Repository

20.4.3.4 Testing the Document Registry

In order to test the Document Registry actor we need a simulator playing the role of both the Document
Consumer and the Document Repository actors. The different test steps required to test the Document
Registry are presented in the following sequence diagram.

CWA XXXXX:XXXX

197

Figure 20-6: Testing the Document Registry

For each test steps, the message send by the SUT will be analyzed and test for conformance with the
specifications.

• Verification of the TLS layer
• Verification of the HTTP transport
• Verification of the MTOM layer
• Verification of the SOAP header
• Verification of the Business Message

20.5 Related Existing Test Artifacts/Tools/Services to Reuse in the Domain

The Test Scenarios described in this document are related to the Test Cases used by IHE in both the pre-
connectathon and the connectathon testing phases.

CWA XXXXX:XXXX

198

Tools are available for simulating the missing actors and checking the conformance of messages to the
XDS.b requirements.

One should consider the following existing set of tools:

1. XDSTools261for simulation and conformance checking of the XDS Actors.
2. XDStarClient62for simulation and conformance checking of XDS messages
3. EVS Client63 for the validation of messages
4. Sharing Value Set Simulator64 for the sharing the coded values with the test participants
5. Gazelle TLS tools65 for the needs in term of security testing: Certificate generation, TLS testing

20.6 Related Stakeholders

IHE XDS.b profile users are or will be clearly interested by using these tests. Although IHE is providing
already set of tools to perform this testing, the ability to share and re-use test cases might be of interest to
organization that extends the XDS.b profile for implementation. Regional projects, national projects (ELGA,
ASIP santé (DMP), Agence eSanté, KELA…) might indeed benefit from re-using the test cases in their
context.

Over 150 companies worldwide66 have tested one of the XDS.b profile at one of the IHE connectathon.

20.7 Re-usability of Test Artifacts/Tools/Services for GITB3

The XDS.b profile requires the exchange of messages in a secure TLS connexion. Testing the TLS part of
the transaction is not specific to the XDS.b context and the test artifacs/tools/services used to test it could be
shared or common to different domain.

The XDS.b profile uses the MTOM, SOAP and HTTP protocol for the transport of the messages. As for the
security aspects, those protocols are not specific either and could be considered to be testing using
artifacs/tools/services from other domains.

61 http://ihexds.nist.gov/xdstools2/

62 http://gazelle.ihe.net/XDStarClient

63 http://gazelle.ihe.net/EVSClient

64 http://gazelle.ihe.net/SVSSimulator

65 http://gazelle.ihe.net/tls

66 http://connectathon-results.ihe.net

CWA XXXXX:XXXX

199

Part V: Manufacturing and Automotive

21 Electronic Invoicing Based on EDIFACT and OFTP2

21.1 Background and Testing Requirements

The smooth running of today’s automotive supply chains relies on the seamless electronic exchange of
business documents between automotive manufacturers and their suppliers. They make extensive use of
EDIFACT messages for electronic communication. European key players in standardization for the
automotive industry include Odette (Organisation for Data Exchange by Tele Transmission in Europe) as
well as national organizations, such as VDA (Verband der Automobilindustrie) for Germany or GALIA
(Groupement pour l’Amélioration des Liaisons dans l’Industrie Automobile) for France. Supported by
the European Commission and major organisations of the automotive industry, significant efforts have been
made in the last years to improve the integration of automotive companies, particularly SMEs, in the sector’s
digital supply chains, among them the auto-gration project. These initiatives build on the existing EDI
infrastructures and facilitate their integration.

The objective of this use case is to verify the use of GITB for interoperability testing and document
conformance testing using Odette OFTP2 messaging protocol and an EDIFACT messages.

GITB demonstrates a test case for electronic invoicing in the automotive industry following document
specifications published by the German association of the automotive industry (VDA – Verband der
Automobilindustrie) and the using the transfer protocols OFTP2 defined by Odette. The test scenario in the
test case demonstrate the capabilities of the GITB testbed to test network connection for both sender and
receiver.

21.2 Verification Scope

The test demonstrates the ability of the GITB platform to perform both an interoperability test and a
document conformance test on EDIFACT messages and transport protocols used in the automotive industry.

21.2.1 Actors

Two parties interact in the invoicing process:

o Seller – The original issuer of a EDIFACT invoice.

o Buyer – The original receiver of a EDIFACT invoice. For the purpose of the test, the buyer is
simulated by GITB.

21.2.2 Business Documents

ODETTE, which is a pan-European collaboration and services platform working for the entire automotive
network, has developed a set of Global Automotive EDIFACT Messages that are used in the Automotive
Industry world-wide. Electronic invoicing relies on the ODETTE subset of the UN/CEFACT EDIFACT invoice
message, as defined by the ODETTE Global INVOIC - European Profile V3.1.

ODETTE provides an EDI Validation Portal6768 based on GEFEG tool for these Global Messages. This
internet validation service allows you to perform a compliance check of your messages against the most
frequently used Global Automotive EDIFACT specifications.

67 http://www.gefeg.com/en/gefeg.validation/vp-odette.htm

68 http://www.gefeg.com/en/standard/automotive/odette.htm

CWA XXXXX:XXXX

200

21.2.3 Standards and Specifications

Electronic invoices are based on the ODETTE Global INVOIC - European Profile V3.1.

As transport and communication protocol the OFTP2 protocol is used, as it addresses the electronic data
interchange (EDI) requirements of the European automotive industry. OFTP2

• enables secure transfer of business documents over the Internet, ISDN and X.25 networks,

• allows encryption and digitally signing message data, requesting signed receipts and also offers high
levels of data compression,

• provides partner authentication mechanism,

• and provides additional session level security over TLS.

A single OFTP2 entity can make and receive calls, exchanging files in both directions.

Figure 21-1: OFTP2 Protocol

Table 21-1: Electronic Invoicing Based on EDIFACT and OFTP2 – Relevant eBusiness Specifications

 Relevant specifications / standards References

Business Process N/A

Business
Documents

ODETTE Global INVOIC - European
Profile V3.1

https://www.odette.org/publications/file/global-
invoic-european-profile

Transport and
Communication
(Messaging)
Protocols

ODETTE messaging protocol OFTP2 https://tools.ietf.org/html/rfc5024
https://www.odette.org/publications/file/new-
oftp2-implementation-guideline-v2.4

Profiles None used

CWA XXXXX:XXXX

201

21.3 Test Scenario

21.3.1 Test Objectives / Requirements

This Test Scenario implements a conformance / interoperability test for the exchange of EDIFACT messages
delivered over a OFTP2 transport protocol.

Success criteria:

• Successful transfer of message trough transport.
• Testing of document conformance and identification of potential errors.

21.3.2 System under Test (s)

Systems under test are buyer and seller systems using EDIFACT messages via OFTP2 transport network.
Both systems are simulated by GITB. This test scenario is representative of real live test scenario where
EDIFACT based messages are exchanged between trading parties in the automotive industry using
messages specifications and transport protocols designed for that industry.

21.3.3 Abstract Test Steps

For the purpose of the test a suite of 4 test scenarios have been prepared in order to test the compliance of
a system under test (SUT) for the automotive use case

1. EDI Receive Test: A sender application, simulated by GITB Engine, sends a valid EDI Invoice
document over OFTP2 to the SUT.

2. EDI Receive With Upload Test: The SUT uploads an EDI Invoice document from his computer and
a sender application simulated by GITB Engine sends this document over OFTP2 to the SUT.

3. EDI Send Test: The SUT sends an EDI document over OFTP2 to the receiver, simulated by GITB
Engine and EDI Validator validates the received document.

4. EDI Interoperability Test: A sender SUT sends an EDI Invoice document to a receiver SUT and
GITB Engine listens this connection like a proxy. The exchanged document is captured by GITB
Engine and validated by EDI Validator.

The test included the following steps.

• Document validation

• Messaging operation validation

21.3.3.1 Document Validation

An EDI validator for EDI INVOIC messages was developed by the GITB project and is included in the PoC
GITB test platform.

EDI INVOIC provides the definition of the Invoice message (INVOIC) to be used in Electronic Data
Interchange (EDI) between trading partners involved in administration, commerce and transport.

Following image shows a section of a sample message.

CWA XXXXX:XXXX

202

Documents were submitted to the validation engine which generated validation reports based on the results
of EDI Validation

Reports indicate the result of the validation operation after validation step is executed. Reports are provided
in two levels.

• Simple level showing the results of the messages validation as whole with Boolean result of success
if all tests are passed, but failure if one or more test rule fails.

• Detailed report with segment by segment error indication in validation reports.

CWA XXXXX:XXXX

203

Figure 21-2: Simple report showing document level results

Figure 21-3: Detailed Report Showing Result on Error Level

21.3.3.2 Messaging Operations

An OFTP2 Messaging Adapter was developed by the GITB project and included in the GITB PoC Test Bed
platform. The adapter enables the exchange (sending, receiving and listening – as a proxy) of EDI
documents over a TCP/IP based network

The message exchange is simulated by the GITB test platform in the following way.

Figure 21-4: Interaction

CWA XXXXX:XXXX

204

Test specification is defined using GITB message specification definitions as follows.

Figure 21-5: Test Case

21.4 Existing Test Artifacts/Tools/Services to Reuse in the Domain

The most popular Test Resource is the GEFEG FX software.

21.5 Stakeholders

Standard Development Organizations (SDOs), industry consortia, companies, public authorities that may be
interested to use the tests:

• Industry consortia

o ODETTE

o National automotive associations, such as VDA (Verband der Automobilindustrie) for Germany
or GALIA (Groupement pour l’Amélioration des Liaisons dans l’Industrie Automobile)

o CEN (as organizer of the auto-gration project)

• Private companies

o Automotive manufacturers and suppliers

CWA XXXXX:XXXX

205

22 Cross-Border Transactions

22.1 Background and Testing Requirements

ClearView Trade is a Danish IT solutions provider that specializes in simplifying cross-border transaction
processes and to improve trade flow. Their main focus is to support freight forwarders and traders with time
and money saving solutions that improve the quality of their customs declarations. They specialize in
standards such as World Customs Organisation (WCO) UN/CEFACT, ISO and CEN.

ClairView Trade required a test suite for the testing of UBL Despatch Advice documents with given
Schematron rules.

22.2 Verification Scope

22.2.1 Actors

The following actors assume a role in this business process:

o Seller – The original issuer of the electronic despatch advice.

o Buyer – The original receiver of the electronic despatch advice.

22.2.2 Business Document

The test is concerned with testing an XML document that is being used in a real live manufacturing use case.
The document is a UBL Despatch Advice, which is common document in delivery of products and may be
applied in multiple business processes.

22.2.3 Underlying Standards and Specifications

Table 22-1: Cross-Border Transactions – Relevant eBusiness Specifications

 Relevant specifications / standards References

Business
Documents

UBL 2.1 http://docs.oasis-open.org/ubl/os-UBL-
2.1/UBL-2.1.html
UBL-DespatchAdvice-2.1.xsd
http://docs.oasis-open.org/ubl/os-UBL-
2.1/xsd/maindoc/UBL-DespatchAdvice-2.1.xsd

22.3 Test Scenario

22.3.1 Objectives and Success Criteria

The test is for verifying document conformance against document specifications. Document conformance
can be verified either as success or failed, i.e. either the document conforms to specifications or it does not.
In the case that it does not, the reasons for failures should be reported.

22.3.2 System under Test (s)

The test is used to test a document conformance against standard specifications. For the purpose of the test
the seller and the buyer are simulated by GITB.

22.3.3 Test Steps

The test suite for ClearView Trade comprises only one test case which aims testing of Despatch Advice
documents with given Schematron rules. During the test case, SUT operator is requested to upload a

CWA XXXXX:XXXX

206

Despatch Advice document which is then, validated by test engine with given Schematron rules. The content
of the test case is given below.

<?xml version="1.0" encoding="UTF-8"?>
<testcase id="DespatchAdvice-Validation" xmlns="http://www.gitb.com/tdl/v1/"
xmlns:gitb="http://www.gitb.com/core/v1/">
 <metadata>
 <gitb:name>DespatchAdvice-Validation</gitb:name>
 <gitb:type>CONFORMANCE</gitb:type>
 <gitb:version>0.1</gitb:version>
 <gitb:description>The objective of this test scenario is to ensure the Sender can upload DespatchAdvice
 documents in order for Test Engine to validate using Schematron rules.
 </gitb:description>
 </metadata>
 <namespaces>
 </namespaces>
 <imports>
 <artifact type="schema" encoding="UTF-8" name="DespatchAdvice_Schematron_File"
>ClearViewTradeTestSuite/artifacts/DespatchAdviceValidateSvrl.xsl</artifact>
 </imports>
 <actors>
 <gitb:actor id="Sender" name="Sender" role="SUT" />
 </actors>
 <variables>
 <var name="despatch_advice" type="object" />
 </variables>
 <steps>
 <interact desc="GITB Engine needs information" with="Sender">
 <request desc="Please upload your despatch advice document:" with="Sender"
contentType="BASE64">$despatch_advice</request>
 </interact>

 <verify handler="SchematronValidator" desc="Validate Despatch Advice against PEPPOL BII Rules">
 <input name="xmldocument">$despatch_advice</input>
 <input name="schematron" source="$DespatchAdvice_Schematron_File"/>
 </verify>
 </steps>
</testcase>

Figure 22-1: Test Case

22.4 Existing Test Artifacts/Tools/Services to Reuse in the Domain

The electronic despatch advice message was tested using the following artifacts:

• UBL XSD Despatch Advice schema:

o UBL-DespatchAdvice-2.1.xsd
http://docs.oasis-open.org/ubl/os-UBL-2.1/xsd/maindoc/UBL-DespatchAdvice-2.1.xsd

22.5 Related stakeholders

Standard Development Organizations (SDOs), industry consortia, companies, public authorities that may be
interested to use the tests:

• Industry consortia

o World Customs Organisation (WCO)

o The European Freight Forwarders Association (EFFA)

o European E-Invoicing Service Providers Association (EESPA)

• Service providers, such as

o ClearTrade View Denmark (http://clearviewtrade.com) for on-boarding their customers

CWA XXXXX:XXXX

207

23 Test Bed Interoperability with Application for a Truck Manufacturer

23.1 Background and Testing Requirements

If Test Beds and Test services use the GITB specifications, Testing Resources can be more easily shared.
To demonstrate the reuse of Testing Resources in a real-world environment, a test case was developed to
demonstrate interaction between two independently developed test beds using GITB protocols for
communication between the systems.

For this purpose, the Validex document testing tools and the GITB Test Bed were integrated (see 10.2). In
conjunction to that the Validex document testing tool was implemented for a Swedish truck manufacturer.

23.2 Verification Scope

The test aims to verify the possibility of making two different test bed solutions work together in an integrated
way as a single solution where one system extends the other. The objective is to successfully submit a
document from one test bed for conformance testing and deliver the results back.

23.2.1 Parties/Actors

The following parties are involved:

o GITB – As interoperability test bed which submits documents to Validex for conformance testing.

o Validex – As document conformance test bed that acts as a extension to the GITB test bed.

23.2.2 Standards and specifications

The test bed connections were tested using the following artifacts.

Table 23-1: Relevant eBusiness Specifications

 Relevant specifications / standards References

Business
Documents

The payment initiation message
(pain01) based on the ISO 20022
XML messages specifications.

www.iso20022.org/payments_messages.page

23.3 Test Scenario

23.3.1 Objectives

GITB performs an interoperability test for FTP exchanging an ISO 20022 payment initiation message
(pain01).

23.3.2 System under Test (s)

GITB test bed.

Validex test bed.

23.3.3 Abstract Test Steps

GITB PoC implementation integrates an online validation tool, called Validex, to demonstrate its capabilities
of integrating external systems according to GITB Service Specifications. In order for an external content
validation system to be integrated with GITB Testbed, it must implement GITB Content Validation Service
Specifications to wrap its functionalities. To realize this integration, a new module, gitb-validator-validex has

CWA XXXXX:XXXX

208

been created with ValidationServiceImpl class that implements the ValidationService web service
interface. With this implementation, Validex becomes accessible through GITB Testbed Validation Service.
Requests to this service are delivered to Validex and responses are wrapped with internal test reporting
format and returned to tester.

The module definition of Validex Validator can be seen below. One difference here from the module
definitions provided in gitb-validators module is that, there is an additional serviceLocation attribute which
denotes the endpoint of wrapper validation service. When the test engine utilizes this validator wrapping the
functionalities of Validex, it calls this service which delivers the request to Validex, as mentioned before.	 	

23.3.4 Validex Integration

Validex has been integrated by implementing GITB Content Validation Service Specifications to wrap its
functionalities and serve them as a content validation service to other stakeholders

In this way, any external content validation service can be integrated with GITB Testbed

Document Validation is realized by delivering requests to Validex via the REST API provided by GITB
Content Validation Services

After validation, Validex results are converted into TR model and presented to user.

Figure 23-1: Test Report

CWA XXXXX:XXXX

209

Figure 23-2: A Sample ISO 20022 Pain Message

23.4 Application in a Truck Manufacturer Test Scenario

A major European truck manufacturer has implemented a validation service using the GITB integrated tool
Validex (https://scania.validex.net/)

The service performs document conformance testing for ISO20022 payment initiation messages: pain01.

CWA XXXXX:XXXX

210

The submit to Validex engine uses API interface that is compliant to GITB test bed which allows the truck
manufacturer to extend their validation functions to include the message transport specifications by
extending the validation to the GITB platform.

Figure 23-3: A sample ISO 20022 pain message

23.5 Stakeholders

This test scenario may be of interest for Standard Development Organizations (SDOs), industry consortia,
companies, public authorities that want to leverage their existing Testing Resources.

In the specific case, Midran Ltd (as producer of Validex test bed) was involved.

CWA XXXXX:XXXX

211

 References

[CEN10] CWA 16093:2010 Feasibility study for a global eBusiness interoperability test bed
http://www.cen.eu/cen/Sectors/Sectors/ISSS/CEN%20Workshop%20Agreements/Pages/downloadArea.aspx

[CEN12] CWA 16408:2012 Testing Framework for Global eBusiness Interoperability TestBeds (GITB)

[TAG] OASIS Committee Note Draft 03, "Test Assertions Guidelines", June 2011 http://www.oasis-
open.org/committees/download.php/42479/testassertionsguidelines-cnd-03-Jun03.pdf

[TAML] OASIS Committee Specification Draft 05, "Test Assertions, Part 2 Test Assertions Markup
Language Version 1.0", June 2011 http://www.oasis-
open.org/committees/download.php/42478/testassertionmarkuplanguage-1.0-csd-05-Jun07.pdf

[WSI10] WS-I Testing Tools V2 for Basic Profiles 1.2 and 2.0, Web Services Interoperability, 2010,
http://www.ws-i.org/

